26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Copper signalling: causes and consequences

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Copper-containing enzymes perform fundamental functions by activating dioxygen (O 2) and therefore allowing chemical energy-transfer for aerobic metabolism. The copper-dependence of O 2 transport, metabolism and production of signalling molecules are supported by molecular systems that regulate and preserve tightly-bound static and weakly-bound dynamic cellular copper pools. Disruption of the reducing intracellular environment, characterized by glutathione shortage and ambient Cu(II) abundance drives oxidative stress and interferes with the bidirectional, copper-dependent communication between neurons and astrocytes, eventually leading to various brain disease forms. A deeper understanding of of the regulatory effects of copper on neuro-glia coupling via polyamine metabolism may reveal novel copper signalling functions and new directions for therapeutic intervention in brain disorders associated with aberrant copper metabolism.

          Related collections

          Most cited references324

          • Record: found
          • Abstract: found
          • Article: not found

          Ferroptosis: process and function.

          Ferroptosis is a recently recognized form of regulated cell death. It is characterized morphologically by the presence of smaller than normal mitochondria with condensed mitochondrial membrane densities, reduction or vanishing of mitochondria crista, and outer mitochondrial membrane rupture. It can be induced by experimental compounds (e.g., erastin, Ras-selective lethal small molecule 3, and buthionine sulfoximine) or clinical drugs (e.g., sulfasalazine, sorafenib, and artesunate) in cancer cells and certain normal cells (e.g., kidney tubule cells, neurons, fibroblasts, and T cells). Activation of mitochondrial voltage-dependent anion channels and mitogen-activated protein kinases, upregulation of endoplasmic reticulum stress, and inhibition of cystine/glutamate antiporter is involved in the induction of ferroptosis. This process is characterized by the accumulation of lipid peroxidation products and lethal reactive oxygen species (ROS) derived from iron metabolism and can be pharmacologically inhibited by iron chelators (e.g., deferoxamine and desferrioxamine mesylate) and lipid peroxidation inhibitors (e.g., ferrostatin, liproxstatin, and zileuton). Glutathione peroxidase 4, heat shock protein beta-1, and nuclear factor erythroid 2-related factor 2 function as negative regulators of ferroptosis by limiting ROS production and reducing cellular iron uptake, respectively. In contrast, NADPH oxidase and p53 (especially acetylation-defective mutant p53) act as positive regulators of ferroptosis by promotion of ROS production and inhibition of expression of SLC7A11 (a specific light-chain subunit of the cystine/glutamate antiporter), respectively. Misregulated ferroptosis has been implicated in multiple physiological and pathological processes, including cancer cell death, neurotoxicity, neurodegenerative diseases, acute renal failure, drug-induced hepatotoxicity, hepatic and heart ischemia/reperfusion injury, and T-cell immunity. In this review, we summarize the regulation mechanisms and signaling pathways of ferroptosis and discuss the role of ferroptosis in disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physiology of Astroglia.

            Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple.

              Redox state is a term used widely in the research field of free radicals and oxidative stress. Unfortunately, it is used as a general term referring to relative changes that are not well defined or quantitated. In this review we provide a definition for the redox environment of biological fluids, cell organelles, cells, or tissue. We illustrate how the reduction potential of various redox couples can be estimated with the Nernst equation and show how pH and the concentrations of the species comprising different redox couples influence the reduction potential. We discuss how the redox state of the glutathione disulfide-glutathione couple (GSSG/2GSH) can serve as an important indicator of redox environment. There are many redox couples in a cell that work together to maintain the redox environment; the GSSG/2GSH couple is the most abundant redox couple in a cell. Changes of the half-cell reduction potential (E(hc)) of the GSSG/2GSH couple appear to correlate with the biological status of the cell: proliferation E(hc) approximately -240 mV; differentiation E(hc) approximately -200 mV; or apoptosis E(hc) approximately -170 mV. These estimates can be used to more fully understand the redox biochemistry that results from oxidative stress. These are the first steps toward a new quantitative biology, which hopefully will provide a rationale and understanding of the cellular mechanisms associated with cell growth and development, signaling, and reductive or oxidative stress.
                Bookmark

                Author and article information

                Contributors
                kardos.julianna@ttk.mta.hu
                heja.laszlo@ttk.mta.hu
                simon.agnes@ttk.mta.hu
                jablonkai.istvan@ttk.mta.hu
                richard.kovacs@charite.de
                jemnitz.katalin@ttk.mta.hu
                Journal
                Cell Commun Signal
                Cell Commun. Signal
                Cell Communication and Signaling : CCS
                BioMed Central (London )
                1478-811X
                22 October 2018
                22 October 2018
                2018
                : 16
                : 71
                Affiliations
                [1 ]ISNI 0000 0001 2149 4407, GRID grid.5018.c, Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, , Hungarian Academy of Sciences, ; Magyar Tudósok körútja 2, Budapest, 1117 Hungary
                [2 ]ISNI 0000 0001 2218 4662, GRID grid.6363.0, Institute of Neurophysiology, , Charité-Universitätsmedizin, ; Berlin, Germany
                Article
                277
                10.1186/s12964-018-0277-3
                6198518
                30348177
                a8c9786e-fb70-4cb8-bd9a-5a0206f53265
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 8 August 2018
                : 24 September 2018
                Funding
                Funded by: EC
                Award ID: KMR_12-1-2012-0112 TRANSRAT
                Award ID: VEKOP-2.1.1-15-2016-00156
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100010024, Hungarian Science Foundation;
                Award ID: OTKA K124558
                Categories
                Review
                Custom metadata
                © The Author(s) 2018

                Cell biology
                redox disproportionation and speciation of copper,dynamic copper pool,copper-rich aggregates,gsh/gssg ratio,copper chelate therapy,neuro-glia coupling

                Comments

                Comment on this article