150
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tumor-Associated Mutant p53 Drives the Warburg Effect

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tumor cells primarily utilize aerobic glycolysis for energy production, a phenomenon known as the Warburg effect. Its mechanism is not well-understood. The tumor suppressor gene p53 is frequently mutated in tumors. Many tumor-associated mutant p53 (mutp53) proteins not only lose tumor suppressive function, but also gain new oncogenic functions that are independent of wild type p53, defined as mutp53 gain-of-function (GOF). Here we show that tumor-associated mutp53 stimulates the Warburg effect in cultured cells and mutp53 knock-in mice as a new mutp53 GOF. Mutp53 stimulates the Warburg effect through promoting GLUT1 translocation to plasma membrane, which is mediated by the activated RhoA and its downstream effector ROCK. Inhibition of the RhoA/ROCK/GLUT1 signaling largely abolishes mutp53 GOF in stimulating the Warburg effect. Furthermore, inhibition of glycolysis in tumor cells greatly compromises mutp53 GOF in promoting tumorigenesis. Thus, our results reveal a new mutp53 GOF and a mechanism for controlling the Warburg effect.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: found

          On the origin of cancer cells.

          O WARBURG (1956)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis

            The p53 tumor-suppressor protein prevents cancer development through various mechanisms, including the induction of cell-cycle arrest, apoptosis, and the maintenance of genome stability. We have identified a p53-inducible gene named TIGAR (TP53-induced glycolysis and apoptosis regulator). TIGAR expression lowered fructose-2,6-bisphosphate levels in cells, resulting in an inhibition of glycolysis and an overall decrease in intracellular reactive oxygen species (ROS) levels. These functions of TIGAR correlated with an ability to protect cells from ROS-associated apoptosis, and consequently, knockdown of endogenous TIGAR expression sensitized cells to p53-induced death. Expression of TIGAR may therefore modulate the apoptotic response to p53, allowing survival in the face of mild or transient stress signals that may be reversed or repaired. The decrease of intracellular ROS levels in response to TIGAR may also play a role in the ability of p53 to protect from the accumulation of genomic damage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The first 30 years of p53: growing ever more complex.

              Thirty years ago p53 was discovered as a cellular partner of simian virus 40 large T-antigen, the oncoprotein of this tumour virus. The first decade of p53 research saw the cloning of p53 DNA and the realization that p53 is not an oncogene but a tumour suppressor that is very frequently mutated in human cancer. In the second decade of research, the function of p53 was uncovered: it is a transcription factor induced by stress, which can promote cell cycle arrest, apoptosis and senescence. In the third decade after its discovery new functions of this protein were revealed, including the regulation of metabolic pathways and cytokines that are required for embryo implantation. The fourth decade of research may see new p53-based drugs to treat cancer. What is next is anybody's guess.
                Bookmark

                Author and article information

                Journal
                101528555
                37539
                Nat Commun
                Nat Commun
                Nature communications
                2041-1723
                20 March 2014
                2013
                17 June 2014
                : 4
                : 2935
                Affiliations
                [1 ]Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ 08902, USA
                [2 ]Department of Pediatrics, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ 08902, USA
                [3 ]Laboratory of Hepatosplenic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin 150086, China
                [4 ]The Institute for Advanced Study, Princeton, NJ 08540, USA
                Author notes
                [6 ]Correspondence should be addressed to W. Hu ( wh221@ 123456cinj.rutgers.edu ) or Z. Feng. ( fengzh@ 123456cinj.rutgers.edu )
                [5]

                These authors contributed equally to this work.

                Article
                NIHMS540681
                10.1038/ncomms3935
                3969270
                24343302
                a8a88dd0-b283-4cd7-9c71-134ad6f3e9f1

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article