A Drosophila transgenic RNAi screen targeting the glycan genome, including all N/O/GAG-glycan biosynthesis/modification enzymes and glycan-binding lectins, was conducted to discover novel glycan functions in synaptogenesis. As proof-of-product, we characterized functionally paired heparan sulfate (HS) 6-O-sulfotransferase ( hs6st) and sulfatase ( sulf1), which bidirectionally control HS proteoglycan (HSPG) sulfation. RNAi knockdown of hs6st and sulf1 causes opposite effects on functional synapse development, with decreased ( hs6st) and increased ( sulf1) neurotransmission strength confirmed in null mutants. HSPG co-receptors for WNT and BMP intercellular signaling, Dally-like Protein and Syndecan, are differentially misregulated in the synaptomatrix of these mutants. Consistently, hs6st and sulf1 nulls differentially elevate both WNT (Wingless; Wg) and BMP (Glass Bottom Boat; Gbb) ligand abundance in the synaptomatrix. Anterograde Wg signaling via Wg receptor dFrizzled2 C-terminus nuclear import and retrograde Gbb signaling via synaptic MAD phosphorylation and nuclear import are differentially activated in hs6st and sulf1 mutants. Consequently, transcriptional control of presynaptic glutamate release machinery and postsynaptic glutamate receptors is bidirectionally altered in hs6st and sulf1 mutants, explaining the bidirectional change in synaptic functional strength. Genetic correction of the altered WNT/BMP signaling restores normal synaptic development in both mutant conditions, proving that altered trans-synaptic signaling causes functional differentiation defects.
Glycans are sugar additions to proteins. Surrounding all eukaryotic cells, secreted and membrane glycans form a glycocalyx that regulates cell–cell signaling. However, the mechanisms controlling glycan-dependent intercellular communication are largely unknown. In the nervous system, glycans play important roles in the development and regulation of synapses mediating intercellular communication. The Drosophila neuromuscular junction serves as a genetically tractable synapse in which expression of glycan-related genes can be systematically knocked down to investigate effects on synaptic morphology and function. This study employs a transgenic RNAi screen to characterize the synaptic requirements of 130 glycan-related genes. From this screen, two functionally paired genes ( hs6st and sulf1) that add or remove a sulfate at the 6-O position on heparan sulfate proteoglycans (HSPGs) were identified as being critically important for synaptic functional development. Removal of each gene produces an opposite effect on neurotransmission strength, weakening and strengthening communication, respectively. This mechanism controls the synaptic expression of two HSPGs, which act as co-receptors to control the abundance of anterograde WNT and retrograde BMP signals, which drive intracellular signal transduction pathways regulating gene transcription to control synaptic functional development. This screen serves as a platform for systematic investigation of glycan mechanisms regulating synaptic development.