1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Glyphosate-induced gut microbiota dysbiosis facilitates male reproductive toxicity in rats

      , , , ,
      Science of The Total Environment
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells.

          Commensal microbes can have a substantial impact on autoimmune disorders, but the underlying molecular and cellular mechanisms remain largely unexplored. We report that autoimmune arthritis was strongly attenuated in the K/BxN mouse model under germ-free (GF) conditions, accompanied by reductions in serum autoantibody titers, splenic autoantibody-secreting cells, germinal centers, and the splenic T helper 17 (Th17) cell population. Neutralization of interleukin-17 prevented arthritis development in specific-pathogen-free K/BxN mice resulting from a direct effect of this cytokine on B cells to inhibit germinal center formation. The systemic deficiencies of the GF animals reflected a loss of Th17 cells from the small intestinal lamina propria. Introduction of a single gut-residing species, segmented filamentous bacteria, into GF animals reinstated the lamina propria Th17 cell compartment and production of autoantibodies, and arthritis rapidly ensued. Thus, a single commensal microbe, via its ability to promote a specific Th cell subset, can drive an autoimmune disease. Copyright 2010 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            The Immune Response to Prevotella Bacteria in Chronic Inflammatory Disease.

            The microbiota plays a central role in human health and disease by shaping immune development, immune responses, metabolism, and protecting from invading pathogens. Technical advances that allow comprehensive characterization of microbial communities by genetic sequencing have sparked the hunt for disease modulating bacteria. Emerging studies in humans have linked increased abundance of Prevotella species at mucosal sites to localized and systemic disease, including periodontitis, bacterial vaginosis, rheumatoid arthritis, metabolic disorders, and low-grade systemic inflammation. Intriguingly, Prevotella abundance is reduced within the lung microbiota of asthma and COPD. Increased Prevotella abundance is associated with augmented Th17-mediated mucosal inflammation, which is in line with the marked capacity of Prevotella in driving Th17 immune responses in vitro. Studies indicate, that Prevotella predominantly activate TLR2 leading to production of Th17-polarizing cytokines by antigen presenting cells, including IL-23 and IL-1. Furthermore, Prevotella stimulate epithelial cells to produce IL-8, IL-6 and CCL20, which can promote mucosal Th17 immune responses and neutrophil recruitment. Prevotella-mediated mucosal inflammation leads to systemic dissemination of inflammatory mediators, bacteria, and bacterial products, which in turn may affect systemic disease outcomes. Studies in mice support a causal role of Prevotella as colonization experiments promote clinical and inflammatory features of human disease. When compared to strict commensal bacteria, Prevotella exhibit increased inflammatory properties as demonstrated by augmented release of inflammatory mediators from immune cells and various stromal cells. These findings indicate that some Prevotella strains may be clinically important pathobionts that can participate in human disease by promoting chronic inflammation. This article is protected by copyright. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis.

              Although the effects of commensal bacteria on intestinal immune development seem to be profound, it remains speculative whether the gut microbiota influences extraintestinal biological functions. Multiple sclerosis (MS) is a devastating autoimmune disease leading to progressive deterioration of neurological function. Although the cause of MS is unknown, microorganisms seem to be important for the onset and/or progression of disease. However, it is unclear how microbial colonization, either symbiotic or infectious, affects autoimmunity. Herein, we investigate a role for the microbiota during the induction of experimental autoimmune encephalomyelitis (EAE), an animal model for MS. Mice maintained under germ-free conditions develop significantly attenuated EAE compared with conventionally colonized mice. Germ-free animals, induced for EAE, produce lower levels of the proinflammatory cytokines IFN-γ and IL-17A in both the intestine and spinal cord but display a reciprocal increase in CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs). Mechanistically, we show that gut dendritic cells from germ-free animals are reduced in the ability to stimulate proinflammatory T cell responses. Intestinal colonization with segmented filamentous bacteria (SFB) is known to promote IL-17 production in the gut; here, we show that SFBs also induced IL-17A-producing CD4(+) T cells (Th17) in the CNS. Remarkably, germ-free animals harboring SFBs alone developed EAE, showing that gut bacteria can affect neurologic inflammation. These findings reveal that the intestinal microbiota profoundly impacts the balance between pro- and antiinflammatory immune responses during EAE and suggest that modulation of gut bacteria may provide therapeutic targets for extraintestinal inflammatory diseases such as MS.
                Bookmark

                Author and article information

                Journal
                Science of The Total Environment
                Science of The Total Environment
                Elsevier BV
                00489697
                January 2022
                January 2022
                : 805
                : 150368
                Article
                10.1016/j.scitotenv.2021.150368
                34543792
                a875d760-e2e4-4cec-a8bc-139269bdd63f
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article