8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prognostic role of immune cells in hepatocellular carcinoma

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hepatocellular carcinoma (HCC), with rising incidence rates, is the most commonly occurring malignancy of the liver that exerts a heavy disease burden particularly in developing countries. A dynamic cross-talk between immune cells and malignant cells in tumor microenvironment governs the hepatocarcinogenesis. Monitoring immune contexture as prognostic markers is quite relevant and essential to evaluate clinical outcomes and to envisage response to therapy. In this review, we present an overview of the prognostic value of various tumor infiltrating immune cells and the continually evolving immune checkpoints as novel biomarkers during HCC. Tumor infiltration by immune cells such as T cells, NK cells and dendritic cells is linked with improved prognosis and favorable outcome, while the intra-tumoral presence of regulatory T cells (Tregs) or myeloid derived suppressor cells (MDSCs) on the other hand is associated with poor clinical outcome. In addition to these, the overexpression of negative regulatory molecules on tumor cells also provides inhibitory signals to T cells and is associated with poor prognosis. The limitation of a single marker can be overcome by advanced prognostication models and algorithms that evaluate multiple prognostic factors and ultimately aid the clinician in improving the disease free and overall survival of HCC patients.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          The blockade of immune checkpoints in cancer immunotherapy.

          Among the most promising approaches to activating therapeutic antitumour immunity is the blockade of immune checkpoints. Immune checkpoints refer to a plethora of inhibitory pathways hardwired into the immune system that are crucial for maintaining self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues in order to minimize collateral tissue damage. It is now clear that tumours co-opt certain immune-checkpoint pathways as a major mechanism of immune resistance, particularly against T cells that are specific for tumour antigens. Because many of the immune checkpoints are initiated by ligand-receptor interactions, they can be readily blocked by antibodies or modulated by recombinant forms of ligands or receptors. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) antibodies were the first of this class of immunotherapeutics to achieve US Food and Drug Administration (FDA) approval. Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            CTLA-4 and PD-1 Pathways

            Supplemental Digital Content is available in the text.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection.

              To investigate the prognostic value of tumor-infiltrating lymphocytes (TILs), especially regulatory T cells (Tregs), in hepatocellular carcinoma (HCC) patients after resection. CD3+, CD4+, CD8+, Foxp3-positive, and granzyme B-positive TILs were assessed by immunohistochemistry in tissue microarrays containing HCC from 302 patients. Prognostic effects of low- or high-density TIL subsets were evaluated by Cox regression and Kaplan-Meier analysis using median values as cutoff. CD3+, CD4+, CD8+ TILs were associated with neither overall survival (OS) nor disease-free survival (DFS). The presence of low intratumoral Tregs in combination with high intratumoral activated CD8+ cytotoxic cells (CTLs), a balance toward CTLs, was an independent prognostic factor for both improved DFS (P = .001) and OS (P < .0001). Five-year OS and DFS rates were only 24.1% and 19.8% for the group with intratumoral high Tregs and low activated CTLs, compared with 64.0% and 59.4% for the group with intratumoral low Tregs and high activated CTLs, respectively. Either intratumoral Tregs alone (P = .001) or intratumoral activated CTLs (P = .001) alone is also an independent predictor for OS. In addition, high Tregs density was associated with both absence of tumor encapsulation (P = .032) and presence of tumor vascular invasion (P = .031). Tregs are associated with HCC invasiveness, and intratumoral balance of regulatory and cytotoxic T cells is a promising independent predictor for recurrence and survival in HCC. A combination of depletion of Tregs and concomitant stimulation of effector T cells may be an effective immunotherapy to reduce recurrence and prolong survival after surgery.
                Bookmark

                Author and article information

                Journal
                EXCLI J
                EXCLI J
                EXCLI J
                EXCLI Journal
                Leibniz Research Centre for Working Environment and Human Factors
                1611-2156
                03 June 2020
                2020
                : 19
                : 718-733
                Affiliations
                [1 ]Department of Translational & Regenerative Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
                [2 ]Department of Immunopathology & Department of Translational & Regenerative Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
                Author notes
                *To whom correspondence should be addressed: Sunil K Arora, Department of Immunopathology, Department of Translational & Regenerative Medicine, I/C HIV Testing and Disease Monitoring Laboratory, Post Graduate Institute of Medical Education and Research (PGIMER),Chandigarh-160012, India; Phone: 0091-172-2755192, E-mail: arora.sunilkumar@ 123456pgimer.edu.in
                Article
                2020-1455 Doc718
                10.17179/excli2020-1455
                7332804
                32636725
                a87279c2-4ccf-483c-9354-d4f93f320362
                Copyright © 2020 Sachdeva et al.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence ( http://creativecommons.org/licenses/by/4.0/) You are free to copy, distribute and transmit the work, provided the original author and source are credited.

                History
                : 20 May 2020
                : 22 May 2020
                Categories
                Review Article

                immune cells,hepatocellular carcinoma,prognosis,immune checkpoint molecules

                Comments

                Comment on this article