2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      FGF21 underlies a hormetic response to metabolic stress in methylmalonic acidemia

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d2615641e516">Methylmalonic acidemia (MMA), an organic acidemia characterized by metabolic instability and multiorgan complications, is most frequently caused by mutations in methylmalonyl-CoA mutase ( <i>MUT</i>). To define the metabolic adaptations in MMA in acute and chronic settings, we studied a mouse model generated by transgenic expression of Mut in the muscle. <i>Mut</i> <sup>–/–</sup>;Tg <sup>INS-MCK- <i>Mut</i> </sup> mice accurately replicate the hepatorenal mitochondriopathy and growth failure seen in severely affected patients and were used to characterize the response to fasting. The hepatic transcriptome in MMA mice was characterized by the chronic activation of stress-related pathways and an aberrant fasting response when compared with controls. A key metabolic regulator, Fgf21, emerged as a significantly dysregulated transcript in mice and was subsequently studied in a large patient cohort. The concentration of plasma FGF21 in MMA patients correlated with disease subtype, growth indices, and markers of mitochondrial dysfunction but was not affected by renal disease. Restoration of liver <i>Mut</i> activity, by transgenesis and liver-directed gene therapy in mice or liver transplantation in patients, drastically reduced plasma FGF21 and was associated with improved outcomes. Our studies identify mitocellular hormesis as a hepatic adaptation to metabolic stress in MMA and define FGF21 as a highly predictive disease biomarker. </p><p class="first" id="d2615641e540">FGF21 levels characterize mitochondrial stress in methylmalonic acidemia (MMA), predict the response to liver-directed gene therapy in mice, and normalize after liver transplantation in patients. </p>

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Fibroblast Growth Factor 21 Reverses Hepatic Steatosis, Increases Energy Expenditure, and Improves Insulin Sensitivity in Diet-Induced Obese Mice

          OBJECTIVE—Fibroblast growth factor 21 (FGF21) has emerged as an important metabolic regulator of glucose and lipid metabolism. The aims of the current study are to evaluate the role of FGF21 in energy metabolism and to provide mechanistic insights into its glucose and lipid-lowering effects in a high-fat diet–induced obesity (DIO) model. RESEARCH DESIGN AND METHODS—DIO or normal lean mice were treated with vehicle or recombinant murine FGF21. Metabolic parameters including body weight, glucose, and lipid levels were monitored, and hepatic gene expression was analyzed. Energy metabolism and insulin sensitivity were assessed using indirect calorimetry and hyperinsulinemic-euglycemic clamp techniques. RESULTS—FGF21 dose dependently reduced body weight and whole-body fat mass in DIO mice due to marked increases in total energy expenditure and physical activity levels. FGF21 also reduced blood glucose, insulin, and lipid levels and reversed hepatic steatosis. The profound reduction of hepatic triglyceride levels was associated with FGF21 inhibition of nuclear sterol regulatory element binding protein-1 and the expression of a wide array of genes involved in fatty acid and triglyceride synthesis. FGF21 also dramatically improved hepatic and peripheral insulin sensitivity in both lean and DIO mice independently of reduction in body weight and adiposity. CONCLUSIONS—FGF21 corrects multiple metabolic disorders in DIO mice and has the potential to become a powerful therapeutic to treat hepatic steatosis, obesity, and type 2 diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation.

            Hepatic metabolic derangements are key components in the development of fatty liver, insulin resistance, and atherosclerosis. SIRT1, a NAD+-dependent protein deacetylase, is an important regulator of energy homeostasis in response to nutrient availability. Here we demonstrate that hepatic SIRT1 regulates lipid homeostasis by positively regulating peroxisome proliferators-activated receptor alpha (PPARalpha), a nuclear receptor that mediates the adaptive response to fasting and starvation. Hepatocyte-specific deletion of SIRT1 impairs PPARalpha signaling and decreases fatty acid beta-oxidation, whereas overexpression of SIRT1 induces the expression of PPARalpha targets. SIRT1 interacts with PPARalpha and is required to activate PPARalpha coactivator PGC-1alpha. When challenged with a high-fat diet, liver-specific SIRT1 knockout mice develop hepatic steatosis, hepatic inflammation, and endoplasmic reticulum stress. Taken together, our data indicate that SIRT1 plays a vital role in the regulation of hepatic lipid homeostasis and that pharmacological activation of SIRT1 may be important for the prevention of obesity-associated metabolic diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitohormesis.

              For many years, mitochondria were viewed as semiautonomous organelles, required only for cellular energetics. This view has been largely supplanted by the concept that mitochondria are fully integrated into the cell and that mitochondrial stresses rapidly activate cytosolic signaling pathways that ultimately alter nuclear gene expression. Remarkably, this coordinated response to mild mitochondrial stress appears to leave the cell less susceptible to subsequent perturbations. This response, termed mitohormesis, is being rapidly dissected in many model organisms. A fuller understanding of mitohormesis promises to provide insight into our susceptibility for disease and potentially provide a unifying hypothesis for why we age. Copyright © 2014 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                JCI Insight
                American Society for Clinical Investigation
                2379-3708
                December 6 2018
                December 6 2018
                December 6 2018
                December 6 2018
                : 3
                : 23
                Article
                10.1172/jci.insight.124351
                6328030
                30518688
                a8482404-14d0-47a2-b145-18dd7ec35dfb
                © 2018
                History

                Comments

                Comment on this article