7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Novel Subset of CD95 + Pro-Inflammatory Macrophages Overcome miR155 Deficiency and May Serve as a Switch From Metabolically Healthy Obesity to Metabolically Unhealthy Obesity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metabolically healthy obesity (MHO) accounts for roughly 35% of all obese patients. There is no clear consensus that has been reached on whether MHO is a stable condition or merely a transitory period between metabolically healthy lean and metabolically unhealthy obesity (MUO). Additionally, the mechanisms underlying MHO and any transition to MUO are not clear. Macrophages are the most common immune cells in adipose tissues and have a significant presence in atherosclerosis. Fas (or CD95), which is highly expressed on macrophages, is classically recognized as a pro-apoptotic cell surface receptor. However, Fas also plays a significant role as a pro-inflammatory molecule. Previously, we established a mouse model (ApoE -/-/miR155 -/-; DKO mouse) of MHO, based on the criteria of not having metabolic syndrome (MetS) and insulin resistance (IR). In our current study, we hypothesized that MHO is a transition phase toward MUO, and that inflammation driven by our newly classified CD95 +CD86 - macrophages is a novel mechanism for this transition. We found that, with extended (24 weeks) high-fat diet feeding (HFD), MHO mice became MUO, shown by increased atherosclerosis. Mechanistically, we found the following: 1) at the MHO stage, DKO mice exhibited increased pro-inflammatory markers in adipose tissue, including CD95, and serum; 2) total adipose tissue macrophages (ATMs) increased; 3) CD95 +CD86 - subset of ATMs also increased; and 4) human aortic endothelial cells (HAECs) were activated (as determined by upregulated ICAM1 expression) when incubated with conditioned media from CD95 +-containing DKO ATMs and human peripheral blood mononuclear cells-derived macrophages in comparison to respective controls. These results suggest that extended HFD in MHO mice promotes vascular inflammation and atherosclerosis via increasing CD95 + pro-inflammatory ATMs. In conclusion, we have identified a novel molecular mechanism underlying MHO transition to MUO with HFD. We have also found a previously unappreciated role of CD95 + macrophages as a potentially novel subset that may be utilized to assess pro-inflammatory characteristics of macrophages, specifically in adipose tissue in the absence of pro-inflammatory miR-155. These findings have provided novel insights on MHO transition to MUO and new therapeutic targets for the future treatment of MUO, MetS, other obese diseases, and type II diabetes.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity.

          Adipocytes secrete a variety of bioactive molecules that affect the insulin sensitivity of other tissues. We now show that the abundance of monocyte chemoattractant protein-1 (MCP-1) mRNA in adipose tissue and the plasma concentration of MCP-1 were increased both in genetically obese diabetic (db/db) mice and in WT mice with obesity induced by a high-fat diet. Mice engineered to express an MCP-1 transgene in adipose tissue under the control of the aP2 gene promoter exhibited insulin resistance, macrophage infiltration into adipose tissue, and increased hepatic triglyceride content. Furthermore, insulin resistance, hepatic steatosis, and macrophage accumulation in adipose tissue induced by a high-fat diet were reduced extensively in MCP-1 homozygous KO mice compared with WT animals. Finally, acute expression of a dominant-negative mutant of MCP-1 ameliorated insulin resistance in db/db mice and in WT mice fed a high-fat diet. These findings suggest that an increase in MCP-1 expression in adipose tissue contributes to the macrophage infiltration into this tissue, insulin resistance, and hepatic steatosis associated with obesity in mice.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Obesity is associated with macrophage accumulation in adipose tissue

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors

              Dendritic cells (DCs) and monocytes play a central role in pathogen sensing, phagocytosis, and antigen presentation and consist of multiple specialized subtypes. However, their identities and interrelationships are not fully understood. Using unbiased single-cell RNA sequencing (RNA-seq) of ~2400 cells, we identified six human DCs and four monocyte subtypes in human blood. Our study reveals a new DC subset that shares properties with plasmacytoid DCs (pDCs) but potently activates T cells, thus redefining pDCs; a new subdivision within the CD1C+ subset of DCs; the relationship between blastic plasmacytoid DC neoplasia cells and healthy DCs; and circulating progenitor of conventional DCs (cDCs). Our revised taxonomy will enable more accurate functional and developmental analyses as well as immune monitoring in health and disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                07 January 2021
                2020
                : 11
                : 619951
                Affiliations
                [1] 1 Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, PA, United States
                [2] 2 Metabolic Disease Research, Lewis Katz School of Medicine at Temple University , Philadelphia, PA, United States
                [3] 3 Vascular Biology Center, Augusta University , Augusta, GA, United States
                [4] 4 Division of Vascular and Endovascular Surgery, Department of Surgery, Lewis Katz School of Medicine at Temple University , Philadelphia, PA, United States
                [5] 5 Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University , Philadelphia, PA, United States
                [6] 6 Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University , Philadelphia, PA, United States
                Author notes

                Edited by: Junji Xing, Houston Methodist Research Institute, United States

                Reviewed by: Devendra K. Agrawal, Western University of Health Sciences, United States; Shiyou Chen, University of Missouri, United States

                *Correspondence: Xiaofeng Yang, xfyang@ 123456temple.edu

                This article was submitted to Molecular Innate Immunity, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2020.619951
                7817616
                33488632
                a8244e42-e6b8-4556-930b-b2aae718b95a
                Copyright © 2021 Johnson, Drummer IV, Shan, Shao, Sun, Lu, Saaoud, Xu, Nanayakkara, Fang, Bagi, Jiang, Choi, Wang and Yang

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 21 October 2020
                : 20 November 2020
                Page count
                Figures: 9, Tables: 0, Equations: 0, References: 84, Pages: 17, Words: 7974
                Categories
                Immunology
                Original Research

                Immunology
                macrophage,cd95 (fas),atherosclerosis,metabolic disease,obesity,metabolic,mir-155,adipose tissue
                Immunology
                macrophage, cd95 (fas), atherosclerosis, metabolic disease, obesity, metabolic, mir-155, adipose tissue

                Comments

                Comment on this article