5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      What Guides Us to Neurally and Behaviorally Align With Anyone Specific? A Neurobiological Model Based on fNIRS Hyperscanning Studies

      1 , 2
      The Neuroscientist
      SAGE Publications

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An emerging body of hyperscanning functional near-infrared spectroscopy (fNIRS) research shows interbrain neural synchrony (IBS) during different forms of social interaction. Here we review the recent literature and propose several factors that facilitate IBS, leading us to ask the following question: In a world full of people and opportunities to synchronize with them, what directs our neural and behavioral alignment with anyone specific? We suggest that IBS between what we deem the “mutual social attention systems” of interacting partners—that is, the coupling between participants’ temporoparietal junctions and/or prefrontal cortices—facilitates and enhances the ability to tune in to the specific interaction, its participants and its goals. We propose that this process is linked to social alignment, reinforcing one another to facilitate successful and lucrative social interactions. We further suggest that neurochemical mechanisms of dopamine and oxytocin underlie the activation of this suggested loop. Finally, we suggest possible directions for future studies, emphasizing the need to develop a brain-to-brain neurofeedback system with IBS between the mutual social attention systems of the participants as the direct regulating target.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The present and future use of functional near‐infrared spectroscopy (fNIRS) for cognitive neuroscience

          Abstract The past few decades have seen a rapid increase in the use of functional near‐infrared spectroscopy (fNIRS) in cognitive neuroscience. This fast growth is due to the several advances that fNIRS offers over the other neuroimaging modalities such as functional magnetic resonance imaging and electroencephalography/magnetoencephalography. In particular, fNIRS is harmless, tolerant to bodily movements, and highly portable, being suitable for all possible participant populations, from newborns to the elderly and experimental settings, both inside and outside the laboratory. In this review we aim to provide a comprehensive and state‐of‐the‐art review of fNIRS basics, technical developments, and applications. In particular, we discuss some of the open challenges and the potential of fNIRS for cognitive neuroscience research, with a particular focus on neuroimaging in naturalistic environments and social cognitive neuroscience.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans.

            In this study, we have preformed simultaneous near-infrared spectroscopy (NIRS) along with BOLD (blood oxygen level dependent) and ASL (arterial spin labeling)-based fMRI during an event-related motor activity in human subjects in order to compare the temporal dynamics of the hemodynamic responses recorded in each method. These measurements have allowed us to examine the validity of the biophysical models underlying each modality and, as a result, gain greater insight into the hemodynamic responses to neuronal activation. Although prior studies have examined the relationships between these two methodologies through similar experiments, they have produced conflicting results in the literature for a variety of reasons. Here, by employing a short-duration, event-related motor task, we have been able to emphasize the subtle temporal differences between the hemodynamic parameters with a high contrast-to-noise ratio. As a result of this improved experimental design, we are able to report that the fMRI measured BOLD response is more correlated with the NIRS measure of deoxy-hemoglobin (R = 0.98; P < 10(-20)) than with oxy-hemoglobin (R = 0.71), or total hemoglobin (R = 0.53). This result was predicted from the theoretical grounds of the BOLD response and is in agreement with several previous works [Toronov, V.A.W., Choi, J.H., Wolf, M., Michalos, A., Gratton, E., Hueber, D., 2001. "Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging." Med. Phys. 28 (4) 521-527.; MacIntosh, B.J., Klassen, L.M., Menon, R.S., 2003. "Transient hemodynamics during a breath hold challenge in a two part functional imaging study with simultaneous near-infrared spectroscopy in adult humans". NeuroImage 20 1246-1252.; Toronov, V.A.W., Walker, S., Gupta, R., Choi, J.H., Gratton, E., Hueber, D., Webb, A., 2003. "The roles of changes in deoxyhemoglobin concentration and regional cerebral blood volume in the fMRI BOLD signal" Neuroimage 19 (4) 1521-1531]. These data have also allowed us to examine more detailed measurement models of the fMRI signal and comment on the roles of the oxygen saturation and blood volume contributions to the BOLD response. In addition, we found high correlation between the NIRS measured total hemoglobin and ASL measured cerebral blood flow (R = 0.91; P < 10(-10)) and oxy-hemoglobin with flow (R = 0.83; P < 10(-05)) as predicted by the biophysical models. Finally, we note a significant amount of cross-modality, correlated, inter-subject variability in amplitude change and time-to-peak of the hemodynamic response. The observed co-variance in these parameters between subjects is in agreement with hemodynamic models and provides further support that fMRI and NIRS have similar vascular sensitivity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dissociable prefrontal networks for cognitive and affective theory of mind: a lesion study.

              The underlying mechanisms and neuroanatomical correlates of theory of mind (ToM), the ability to make inferences on others' mental states, remain largely unknown. While numerous studies have implicated the ventromedial (VM) frontal lobes in ToM, recent findings have questioned the role of the prefrontal cortex. We designed two novel tasks that examined the hypothesis that affective ToM processing is distinct from that related to cognitive ToM and depends in part on separate anatomical substrates. The performance of patients with localized lesions in the VM was compared to responses of patients with dorsolateral lesions, mixed prefrontal lesions, and posterior lesions and with healthy control subjects. While controls made fewer errors on affective as compared to cognitive ToM conditions in both tasks, patients with VM damage showed a different trend. Furthermore, while affective ToM was mostly impaired by VM damage, cognitive ToM was mostly impaired by extensive prefrontal damage, suggesting that cognitive and affective mentalizing abilities are partly dissociable. By introducing the concept of 'affective ToM' to the study of social cognition, these results offer new insights into the mediating role of the VM in the affective facets of social behavior that may underlie the behavioral disturbances observed in these patients.
                Bookmark

                Author and article information

                Journal
                The Neuroscientist
                Neuroscientist
                SAGE Publications
                1073-8584
                1089-4098
                April 2020
                July 11 2019
                April 2020
                : 26
                : 2
                : 108-116
                Affiliations
                [1 ]The Department of Behavioral Sciences and Psychology, Ariel University, Ariel, Israel
                [2 ]The Department of Psychology, University of Haifa, Haifa, Israel
                Article
                10.1177/1073858419861912
                31296135
                a7e38aea-3007-4c7f-9522-88b00c1ee427
                © 2020

                http://journals.sagepub.com/page/policies/text-and-data-mining-license

                History

                Comments

                Comment on this article