2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sustainability science and implementing the sustainable development goals

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Integration: the key to implementing the Sustainable Development Goals

          On 25 September, 2015, world leaders met at the United Nations in New York, where they adopted the Sustainable Development Goals. These 17 goals and 169 targets set out an agenda for sustainable development for all nations that embraces economic growth, social inclusion, and environmental protection. Now, the agenda moves from agreeing the goals to implementing and ultimately achieving them. Across the goals, 42 targets focus on means of implementation, and the final goal, Goal 17, is entirely devoted to means of implementation. However, these implementation targets are largely silent about interlinkages and interdependencies among goals. This leaves open the possibility of perverse outcomes and unrealised synergies. We demonstrate that there must be greater attention on interlinkages in three areas: across sectors (e.g., finance, agriculture, energy, and transport), across societal actors (local authorities, government agencies, private sector, and civil society), and between and among low, medium and high income countries. Drawing on a global sustainability science and practice perspective, we provide seven recommendations to improve these interlinkages at both global and national levels, in relation to the UN’s categories of means of implementation: finance, technology, capacity building, trade, policy coherence, partnerships, and, finally, data, monitoring and accountability. Electronic supplementary material The online version of this article (doi:10.1007/s11625-016-0383-3) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Policy coherence to achieve the SDGs: using integrated simulation models to assess effective policies

            Coherently addressing the 17 Sustainable Development Goals requires planning tools that guide policy makers. Given the integrative nature of the SDGs, we believe that integrative modelling techniques are especially useful for this purpose. In this paper, we present and demonstrate the use of the new System Dynamics based iSDG family of models. We use a national model for Tanzania to analyse impacts of substantial investments in photovoltaic capacity. Our focus is on the impacts on three SDGs: SDG 3 on healthy lives and well-being, SDG 4 on education, and SDG 7 on energy. In our simulations, the investments in photovoltaics positively affect life expectancy, years of schooling and access to electricity. More importantly, the progress on these dimensions synergizes and leads to broader system-wide impacts. While this one national example illustrates the anticipated impact of an intervention in one specific area on several SDGs, the iSDG model can be used to support similar analyses for policies related to all the 17 SDGs, both individually and concurrently. We believe that integrated models such as the iSDG model can bring interlinks to the forefront and facilitate a shift to a discussion on development grounded in systems thinking.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Strong sustainability in coastal areas: a conceptual interpretation of SDG 14

              Humans derive many tangible and intangible benefits from coastal areas, providing essential components for social and economic development especially of less developed coastal states and island states. At the same time, growing human and environmental pressures in coastal areas have significant impacts on coastal systems, requiring urgent attention in many coastal areas globally. Sustainable development goal (SDG) 14 of the 2030 Agenda for Sustainable Development (henceforth the 2030 Agenda) aims for conservation and sustainable use of the oceans, seas, and marine resources, explicitly considering coastal areas in two of its targets (14.2 and 14.5). These promote, as we argue in this article, a strong sustainability concept by addressing protection, conservation, and management of coastal ecosystems and resources. The 2030 Agenda adopts the so-called “three-pillar-model” but does not specify how to balance the economic, social, and environmental dimensions in cases of trade-offs or conflicts. By analysing SDG 14 for the underlying sustainability concept, we derive decisive arguments for a strong sustainability concept and for the integration of constraint functions to avoid depletion of natural capital of coastal areas beyond safe minimum standards. In potential negotiations, targets 14.2 and 14.5 ought to serve as constraints to such depletion. However, such a rule-based framework has challenges and pitfalls which need to be addressed in the implementation and policy process. We discuss these for coastal areas in the context of SDG 14 and provide recommendations for coastal governance and for the process ahead.
                Bookmark

                Author and article information

                Journal
                Sustainability Science
                Sustain Sci
                Springer Science and Business Media LLC
                1862-4065
                1862-4057
                November 2017
                September 20 2017
                November 2017
                : 12
                : 6
                : 907-910
                Article
                10.1007/s11625-017-0486-5
                a79077de-9875-4f9b-8fea-1e417a6bc605
                © 2017

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article