17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spin-Nematic Squeezed Vacuum in a Quantum Gas

      Preprint
      , , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Using squeezed states it is possible to surpass the standard quantum limit of measurement uncertainty by reducing the measurement uncertainty of one property at the expense of another complementary property. Squeezed states were first demonstrated in optical fields and later with ensembles of pseudo spin-1/2 atoms using non-linear atom-light interactions. Recently, collisional interactions in ultracold atomic gases have been used to generate a large degree of quadrature spin squeezing in two-component Bose condensates. For pseudo spin-1/2 systems, the complementary properties are the different components of the total spin vector <S>, which fully characterize the state on an SU(2) Bloch sphere. Here, we measure squeezing in a spin-1 Bose condensate, an SU(3) system, which requires measurement of the rank-2 nematic or quadrupole tensor <Q_ij> as well to fully characterize the state. Following a quench through a nematic to ferromagnetic quantum phase transition, squeezing is observed in the variance of the quadratures up to -8.3(-0.7 +0.6) dB (-10.3(-0.9 +0.7) dB corrected for detection noise) below the standard quantum limit. This spin-nematic squeezing is observed for negligible occupation of the squeezed modes and is analogous to optical two-mode vacuum squeezing. This work has potential applications to continuous variable quantum information and quantum-enhanced magnetometry.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: not found
          • Article: not found

          Squeezed spin states

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Squeezed atomic states and projection noise in spectroscopy

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Nonlinear atom interferometer surpasses classical precision limit

              Interference is fundamental to wave dynamics and quantum mechanics. The quantum wave properties of particles are exploited in metrology using atom interferometers, allowing for high-precision inertia measurements [1, 2]. Furthermore, the state-of-the-art time standard is based on an interferometric technique known as Ramsey spectroscopy. However, the precision of an interferometer is limited by classical statistics owing to the finite number of atoms used to deduce the quantity of interest [3]. Here we show experimentally that the classical precision limit can be surpassed using nonlinear atom interferometry with a Bose-Einstein condensate. Controlled interactions between the atoms lead to non-classical entangled states within the interferometer; this represents an alternative approach to the use of non-classical input states [4-8]. Extending quantum interferometry [9] to the regime of large atom number, we find that phase sensitivity is enhanced by 15 per cent relative to that in an ideal classical measurement. Our nonlinear atomic beam splitter follows the "one-axis-twisting" scheme [10] and implements interaction control using a narrow Feshbach resonance. We perform noise tomography of the quantum state within the interferometer and detect coherent spin squeezing with a squeezing factor of -8.2dB [11-15]. The results provide information on the many-particle quantum state, and imply the entanglement of 170 atoms [16].
                Bookmark

                Author and article information

                Journal
                07 November 2011
                2012-03-02
                Article
                10.1038/nphys2245
                1111.1694
                a79075cb-d3e4-4ebb-b91b-958cbf2e9cb3

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                cond-mat.quant-gas physics.atom-ph quant-ph

                Comments

                Comment on this article