13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nanotribological and nanomechanical properties of plasma-polymerized polyterpenol thin films

      ,
      Journal of Materials Research
      Cambridge University Press (CUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments

          The indentation load-displacement behavior of six materials tested with a Berkovich indenter has been carefully documented to establish an improved method for determining hardness and elastic modulus from indentation load-displacement data. The materials included fused silica, soda–lime glass, and single crystals of aluminum, tungsten, quartz, and sapphire. It is shown that the load–displacement curves during unloading in these materials are not linear, even in the initial stages, thereby suggesting that the flat punch approximation used so often in the analysis of unloading data is not entirely adequate. An analysis technique is presented that accounts for the curvature in the unloading data and provides a physically justifiable procedure for determining the depth which should be used in conjunction with the indenter shape function to establish the contact area at peak load. The hardnesses and elastic moduli of the six materials are computed using the analysis procedure and compared with values determined by independent means to assess the accuracy of the method. The results show that with good technique, moduli can be measured to within 5%.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The path to ubiquitous and low-cost organic electronic appliances on plastic.

            Organic electronics are beginning to make significant inroads into the commercial world, and if the field continues to progress at its current, rapid pace, electronics based on organic thin-film materials will soon become a mainstay of our technological existence. Already products based on active thin-film organic devices are in the market place, most notably the displays of several mobile electronic appliances. Yet the future holds even greater promise for this technology, with an entirely new generation of ultralow-cost, lightweight and even flexible electronic devices in the offing, which will perform functions traditionally accomplished using much more expensive components based on conventional semiconductor materials such as silicon.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Roughness parameters

                Bookmark

                Author and article information

                Journal
                applab
                Journal of Materials Research
                J. Mater. Res.
                Cambridge University Press (CUP)
                0884-2914
                2044-5326
                December 2011
                November 4 2011
                December 2011
                : 26
                : 23
                : 2952-2961
                Article
                10.1557/jmr.2011.349
                a78c299f-4eca-4492-a5cd-7d2aecf031ee
                © 2011
                History

                Comments

                Comment on this article

                scite_
                14
                0
                12
                0
                Smart Citations
                14
                0
                12
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content2,884

                Cited by4

                Most referenced authors261