17
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of climate change on biodiversity and food security: a global perspective—a review article

      Agriculture & Food Security
      Springer Science and Business Media LLC

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Climate change is happening due to natural factors and human activities. It expressively alters biodiversity, agricultural production, and food security. Mainly, narrowly adapted and endemic species are under extinction. Accordingly, concerns over species extinction are warranted as it provides food for all life forms and primary health care for more than 60–80% of humans globally. Nevertheless, the impact of climate change on biodiversity and food security has been recognized, little is explored compared to the magnitude of the problem globally. Therefore, the objectives of this review are to identify, appraise, and synthesize the link between climate change, biodiversity, and food security. Data, climatic models, emission, migration, and extinction scenarios, and outputs from previous publications were used. Due to climate change, distributions of species have shifted to higher elevations at a median rate of 11.0 m and 16.9 km per decade to higher latitudes. Accordingly, extinction rates of 1103 species under migration scenarios, provide 21–23% with unlimited migration and 38–52% with no migration. When an environmental variation occurs on a timescale shorter than the life of the plant any response could be in terms of a plastic phenotype. However, phenotypic plasticity could buffer species against the long-term effects of climate change. Furthermore, climate change affects food security particularly in communities and locations that depend on rain-fed agriculture. Crops and plants have thresholds beyond which growth and yield are compromised. Accordingly, agricultural yields in Africa alone could be decline by more than 30% in 2050. Therefore, solving food shortages through bringing extra land into agriculture and exploiting new fish stocks is a costly solution, when protecting biodiversity is given priority. Therefore, mitigating food waste, compensating food-insecure people conserving biodiversity, effective use of genetic resources, and traditional ecological knowledge could decrease further biodiversity loss, and meet food security under climate change scenarios. However, achieving food security under such scenario requires strong policies, releasing high-yielding stress resistant varieties, developing climate resilient irrigation structures, and agriculture. Therefore, degraded land restoration, land use changes, use of bio-energy, sustainable forest management, and community based biodiversity conservation are recommended to mitigate climate change impacts.

          Related collections

          Most cited references253

          • Record: found
          • Abstract: found
          • Article: not found

          Food security: the challenge of feeding 9 billion people.

          Continuing population and consumption growth will mean that the global demand for food will increase for at least another 40 years. Growing competition for land, water, and energy, in addition to the overexploitation of fisheries, will affect our ability to produce food, as will the urgent requirement to reduce the impact of the food system on the environment. The effects of climate change are a further threat. But the world can produce more food and can ensure that it is used more efficiently and equitably. A multifaceted and linked global strategy is needed to ensure sustainable and equitable food security, different components of which are explored here.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global food demand and the sustainable intensification of agriculture.

            Global food demand is increasing rapidly, as are the environmental impacts of agricultural expansion. Here, we project global demand for crop production in 2050 and evaluate the environmental impacts of alternative ways that this demand might be met. We find that per capita demand for crops, when measured as caloric or protein content of all crops combined, has been a similarly increasing function of per capita real income since 1960. This relationship forecasts a 100-110% increase in global crop demand from 2005 to 2050. Quantitative assessments show that the environmental impacts of meeting this demand depend on how global agriculture expands. If current trends of greater agricultural intensification in richer nations and greater land clearing (extensification) in poorer nations were to continue, ~1 billion ha of land would be cleared globally by 2050, with CO(2)-C equivalent greenhouse gas emissions reaching ~3 Gt y(-1) and N use ~250 Mt y(-1) by then. In contrast, if 2050 crop demand was met by moderate intensification focused on existing croplands of underyielding nations, adaptation and transfer of high-yielding technologies to these croplands, and global technological improvements, our analyses forecast land clearing of only ~0.2 billion ha, greenhouse gas emissions of ~1 Gt y(-1), and global N use of ~225 Mt y(-1). Efficient management practices could substantially lower nitrogen use. Attainment of high yields on existing croplands of underyielding nations is of great importance if global crop demand is to be met with minimal environmental impacts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global biodiversity scenarios for the year 2100.

              Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Agriculture & Food Security
                Agric & Food Secur
                Springer Science and Business Media LLC
                2048-7010
                December 2021
                September 06 2021
                : 10
                : 1
                Article
                10.1186/s40066-021-00318-5
                a761c346-3e69-4885-a4ce-5e3fd47a04dc
                © 2021

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article