72
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Krüppel-like Factor 11 Regulates the Expression of Metabolic Genes via an Evolutionarily Conserved Protein Interaction Domain Functionally Disrupted in Maturity Onset Diabetes of the Young*

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Most genetic alterations in MODY affect transcription factors.

          Results: We functionally characterize a conserved domain in KLF11, which is disrupted in MODY7 patients.

          Conclusion: Defects in KLF11 not only affect insulin biosynthesis but also diabetes-associated metabolic gene networks.

          Significance: Disruption of this KLF11 regulatory domain as in MODY7 has wider effects on β cell gene expression than anticipated, helping to clarify disease mechanisms.

          Abstract

          The function of Krüppel-like factor 11 (KLF11) in the regulation of metabolic pathways is conserved from flies to human. Alterations in KLF11 function result in maturity onset diabetes of the young 7 (MODY7) and neonatal diabetes; however, the mechanisms underlying the role of this protein in metabolic disorders remain unclear. Here, we investigated how the A347S genetic variant, present in MODY7 patients, modulates KLF11 transcriptional activity. A347S affects a previously identified transcriptional regulatory domain 3 (TRD3) for which co-regulators remain unknown. Structure-oriented sequence analyses described here predicted that the KLF11 TRD3 represents an evolutionarily conserved protein domain. Combined yeast two-hybrid and protein array experiments demonstrated that the TRD3 binds WD40, WWI, WWII, and SH3 domain-containing proteins. Using one of these proteins as a model, guanine nucleotide-binding protein β2 (Gβ 2), we investigated the functional consequences of KLF11 coupling to a TRD3 binding partner. Combined immunoprecipitation and biomolecular fluorescence complementation assays confirmed that activation of three different metabolic G protein-coupled receptors (β-adrenergic, secretin, and cholecystokinin) induces translocation of Gβ 2 to the nucleus where it directly binds KLF11 in a manner that is disrupted by the MODY7 A347S variant. Using genome-wide expression profiles, we identified metabolic gene networks impacted upon TRD3 disruption. Furthermore, A347S disrupted KLF11-mediated increases in basal insulin levels and promoter activity and blunted glucose-stimulated insulin secretion. Thus, this study characterizes a novel protein/protein interaction domain disrupted in a KLF gene variant that associates to MODY7, contributing to our understanding of gene regulation events in complex metabolic diseases.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis.

          By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined P<5x10(-8). These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers.

            Histones comprise the major protein component of chromatin, the scaffold in which the eukaryotic genome is packaged, and are subject to many types of post-translational modifications (PTMs), especially on their flexible tails. These modifications may constitute a 'histone code' and could be used to manage epigenetic information that helps extend the genetic message beyond DNA sequences. This proposed code, read in part by histone PTM-binding 'effector' modules and their associated complexes, is predicted to define unique functional states of chromatin and/or regulate various chromatin-templated processes. A wealth of structural and functional data show how chromatin effector modules target their cognate covalent histone modifications. Here we summarize key features in molecular recognition of histone PTMs by a diverse family of 'reader pockets', highlighting specific readout mechanisms for individual marks, common themes and insights into the downstream functional consequences of the interactions. Changes in these interactions may have far-reaching implications for human biology and disease, notably cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of an imprinted master trans-regulator at the KLF14 locus related to multiple metabolic phenotypes

              Genome-wide association studies have identified many genetic variants associated with complex traits. However, at only a minority of loci have the molecular mechanisms mediating these associations been characterized. In parallel, whilst cis-regulatory patterns of gene expression have been extensively explored, the identification of trans-regulatory effects in humans has attracted less attention. We demonstrate that the Type 2 diabetes and HDL-cholesterol associated cis-acting eQTL of the maternally-expressed transcription factor KLF14 acts as a master trans-regulator of adipose gene expression. Expression levels of genes regulated by this trans-eQTL are highly-correlated with concurrently-measured metabolic traits, and a subset of the trans-genes harbor variants directly-associated with metabolic phenotypes. This trans-eQTL network provides a mechanistic understanding of the effect of the KLF14 locus on metabolic disease risk, providing a potential model for other complex traits.
                Bookmark

                Author and article information

                Journal
                J Biol Chem
                J. Biol. Chem
                jbc
                jbc
                JBC
                The Journal of Biological Chemistry
                American Society for Biochemistry and Molecular Biology (9650 Rockville Pike, Bethesda, MD 20814, U.S.A. )
                0021-9258
                1083-351X
                14 June 2013
                15 April 2012
                15 April 2012
                : 288
                : 24
                : 17745-17758
                Affiliations
                From the []Laboratory of Epigenetics and Chromatin Dynamics, Epigenomics Translational Program, Mayo Clinic Center for Individualized Medicine, Division of Gastroenterology and Hepatology, and Department of Biochemistry and Molecular Biology,
                [§ ]Department of Anesthesiology and Kogod Aging Center, and
                []Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905,
                []Molecular Endocrinology and Oncology Research Center, CHUL Research Center, Quebec 61V 462, Canada,
                [** ]Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259, and
                [‡‡ ]Centre de Recherche en Carcérologie de Marseille, INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille F-13288, France
                Author notes
                [1 ] To whom correspondence may be addressed. E-mail: fernandezzapico.martin@ 123456mayo.edu .
                [2 ] To whom correspondence may be addressed. E-mail: urrutia.raul@ 123456mayo.edu .
                Article
                M112.434670
                10.1074/jbc.M112.434670
                3682574
                23589285
                a74b9d44-a500-4ecb-b4e3-484f2f0a8bf7
                © 2013 by The American Society for Biochemistry and Molecular Biology, Inc.

                Author's Choice—Final version full access.

                Creative Commons Attribution Unported License applies to Author Choice Articles

                History
                : 7 November 2012
                : 1 April 2013
                Funding
                Funded by: National Institutes of Health
                Award ID: DK52913
                Award ID: T32-CA148073
                Award ID: CA102701
                Award ID: P30DK084567
                Categories
                Gene Regulation

                Biochemistry
                g proteins,gene regulation,krüppel-like factor (klf),protein-protein interactions,transcription,gβ2,klf11,wd40,metabolic gene networks

                Comments

                Comment on this article