0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Imbalanced lipid homeostasis caused by membrane αKlotho deficiency contributes to the acute kidney injury to chronic kidney disease transition

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          After acute kidney injury (AKI), renal tubular epithelial cells (RTECs) are pathologically characterized by intracellular lipid droplet (LD) accumulation, which are involved in RTEC injury and kidney fibrosis. However, its pathogenesis remains incompletely understood. The protein, αKlotho, primarily expressed in RTECs, is well known as an anti-aging hormone wielding versatile functions, and its membrane form predominantly acts as a co-receptor for fibroblast growth factor 23. Here, we discovered a connection between membrane αKlotho and intracellular LDs in RTECs. Fluorescent fatty acid (FA) pulse-chase assays showed that membrane αKlotho deficiency in RTECs, as seen in αKlotho homozygous mutated (kl/kl) mice or in mice with ischemia-reperfusion injury (IRI)-induced AKI, inhibited FA mobilization from LDs by impairing adipose triglyceride lipase (ATGL)-mediated lipolysis and lipophagy. This resulted in LD accumulation and FA underutilization. IRI-induced alterations were more striking in αKlotho deficiency. Mechanistically, membrane αKlotho deficiency promoted E3 ligase peroxin2 binding to ubiquitin-conjugating enzyme E2 D2, resulting in ubiquitin-mediated degradation of ATGL which is a common molecular basis for lipolysis and lipophagy. Overexpression of αKlotho rescued FA mobilization by preventing ATGL ubiquitination, thereby lessening LD accumulation and fibrosis after AKI. This suggests that membrane αKlotho is indispensable for the maintenance of lipid homeostasis in RTECs. Thus, our study identified αKlotho as a critical regulator of lipid turnover and homeostasis in AKI, providing a viable strategy for preventing tubular injury and the AKI-to-chronic kidney disease transition.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Autophagy regulates lipid metabolism.

          The intracellular storage and utilization of lipids are critical to maintain cellular energy homeostasis. During nutrient deprivation, cellular lipids stored as triglycerides in lipid droplets are hydrolysed into fatty acids for energy. A second cellular response to starvation is the induction of autophagy, which delivers intracellular proteins and organelles sequestered in double-membrane vesicles (autophagosomes) to lysosomes for degradation and use as an energy source. Lipolysis and autophagy share similarities in regulation and function but are not known to be interrelated. Here we show a previously unknown function for autophagy in regulating intracellular lipid stores (macrolipophagy). Lipid droplets and autophagic components associated during nutrient deprivation, and inhibition of autophagy in cultured hepatocytes and mouse liver increased triglyceride storage in lipid droplets. This study identifies a critical function for autophagy in lipid metabolism that could have important implications for human diseases with lipid over-accumulation such as those that comprise the metabolic syndrome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development.

            Renal fibrosis is the histological manifestation of a progressive, usually irreversible process causing chronic and end-stage kidney disease. We performed genome-wide transcriptome studies of a large cohort (n = 95) of normal and fibrotic human kidney tubule samples followed by systems and network analyses and identified inflammation and metabolism as the top dysregulated pathways in the diseased kidneys. In particular, we found that humans and mouse models with tubulointerstitial fibrosis had lower expression of key enzymes and regulators of fatty acid oxidation (FAO) and higher intracellular lipid deposition compared to controls. In vitro experiments indicated that inhibition of FAO in tubule epithelial cells caused ATP depletion, cell death, dedifferentiation and intracellular lipid deposition, phenotypes observed in fibrosis. In contrast, restoring fatty acid metabolism by genetic or pharmacological methods protected mice from tubulointerstitial fibrosis. Our results raise the possibility that correcting the metabolic defect in FAO may be useful for preventing and treating chronic kidney disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cellular quality control by the ubiquitin-proteasome system and autophagy

              To achieve homeostasis, cells evolved dynamic and self-regulating quality control processes to adapt to new environmental conditions and to prevent prolonged damage. We discuss the importance of two major quality control systems responsible for degradation of proteins and organelles in eukaryotic cells: the ubiquitin-proteasome system (UPS) and autophagy. The UPS and autophagy form an interconnected quality control network where decision-making is self-organized on the basis of biophysical parameters (binding affinities, local concentrations, and avidity) and compartmentalization (through membranes, liquid-liquid phase separation, or the formation of aggregates). We highlight cellular quality control factors that delineate their differential deployment toward macromolecular complexes, liquid-liquid phase-separated subcellular structures, or membrane-bound organelles. Finally, we emphasize the need for continuous promotion of quantitative and mechanistic research into the roles of the UPS and autophagy in human pathophysiology.
                Bookmark

                Author and article information

                Contributors
                Journal
                Kidney International
                Kidney International
                Elsevier BV
                00852538
                November 2023
                November 2023
                : 104
                : 5
                : 956-974
                Article
                10.1016/j.kint.2023.08.016
                37673285
                a70af1d4-99a7-4ade-ad92-9ad0a287685f
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article