Search for authorsSearch for similar articles
26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of protein tyrosine phosphatase improves mitochondrial bioenergetics and dynamics, reduces oxidative stress, and enhances adipogenic differentiation potential in metabolically impaired progenitor stem cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Protein tyrosine phosphatase 1B (PTP1B) and low molecular weight protein tyrosine phosphatase (LMPTP) are implicated in the development of metabolic disorders. Yet, their role in progenitor stem cell adipogenic differentiation and modulation of mitochondrial dynamics remains elusive.

          Methods

          In this study, we decided to investigate whether inhibition of PTP1B and LMPTP enhance adipogenic differentiation of metabolically impaired progenitor stem cells via modulation of mitochondrial bioenergetics and dynamics. Cells were cultured under adipogenic conditions in the presence of PTP1B and LMPTP inhibitors, and were subjected to the analysis of the main adipogenic-related and mitochondrial-related genes using RT-qPCR. Protein levels were established with western blot while mitochondrial morphology with MicroP software.

          Results

          Selective inhibitors of both PTP1B and MPTP enhanced adipogenic differentiation of metabolically impaired progenitor stem cells. We have observed enhanced expression of PPARy and adiponectin in treated cells. What is more, increased antioxidative defence and alternations in mitochondrial bioenergetics were observed. We have found that inhibition of PTP1B as well as C23 activates oxidative phosphorylation and enhances mitochondrial fusion contributing to enhanced adipogenesis.

          Conclusions

          The presented data provides evidence that the application of PTP1B and LMPTP inhibitors enhances adipogenesis through the modulation of mitochondrial dynamics.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12964-021-00772-5.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Global Epidemic of the Metabolic Syndrome

          Metabolic syndrome, variously known also as syndrome X, insulin resistance, etc., is defined by WHO as a pathologic condition characterized by abdominal obesity, insulin resistance, hypertension, and hyperlipidemia. Though there is some variation in the definition by other health care organization, the differences are minor. With the successful conquest of communicable infectious diseases in most of the world, this new non-communicable disease (NCD) has become the major health hazard of modern world. Though it started in the Western world, with the spread of the Western lifestyle across the globe, it has become now a truly global problem. The prevalence of the metabolic syndrome is often more in the urban population of some developing countries than in its Western counterparts. The two basic forces spreading this malady are the increase in consumption of high calorie-low fiber fast food and the decrease in physical activity due to mechanized transportations and sedentary form of leisure time activities. The syndrome feeds into the spread of the diseases like type 2 diabetes, coronary diseases, stroke, and other disabilities. The total cost of the malady including the cost of health care and loss of potential economic activity is in trillions. The present trend is not sustainable unless a magic cure is found (unlikely) or concerted global/governmental/societal efforts are made to change the lifestyle that is promoting it. There are certainly some elements in the causation of the metabolic syndrome that cannot be changed but many are amenable for corrections and curtailments. For example, better urban planning to encourage active lifestyle, subsidizing consumption of whole grains and possible taxing high calorie snacks, restricting media advertisement of unhealthy food, etc. Revitalizing old fashion healthier lifestyle, promoting old-fashioned foods using healthy herbs rather than oil and sugar, and educating people about choosing healthy/wholesome food over junks are among the steps that can be considered.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications

            Obesity is a critical risk factor for the development of type 2 diabetes (T2D), and its prevalence is rising worldwide. White adipose tissue (WAT) has a crucial role in regulating systemic energy homeostasis. Adipose tissue expands by a combination of an increase in adipocyte size (hypertrophy) and number (hyperplasia). The recruitment and differentiation of adipose precursor cells in the subcutaneous adipose tissue (SAT), rather than merely inflating the cells, would be protective from the obesity-associated metabolic complications. In metabolically unhealthy obesity, the storage capacity of SAT, the largest WAT depot, is limited, and further caloric overload leads to the fat accumulation in ectopic tissues (e.g., liver, skeletal muscle, and heart) and in the visceral adipose depots, an event commonly defined as “lipotoxicity.” Excessive ectopic lipid accumulation leads to local inflammation and insulin resistance (IR). Indeed, overnutrition triggers uncontrolled inflammatory responses in WAT, leading to chronic low-grade inflammation, therefore fostering the progression of IR. This review summarizes the current knowledge on WAT dysfunction in obesity and its associated metabolic abnormalities, such as IR. A better understanding of the mechanisms regulating adipose tissue expansion in obesity is required for the development of future therapeutic approaches in obesity-associated metabolic complications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeting adipose tissue in the treatment of obesity-associated diabetes

              Adipose tissue regulates numerous physiological processes, and its dysfunction in obese humans is associated with disrupted metabolic homeostasis, insulin resistance and type 2 diabetes mellitus (T2DM). Although several US-approved treatments for obesity and T2DM exist, these are limited by adverse effects and a lack of effective long-term glucose control. In this Review, we provide an overview of the role of adipose tissue in metabolic homeostasis and assess emerging novel therapeutic strategies targeting adipose tissue, including adipokine-based strategies, promotion of white adipose tissue beiging as well as reduction of inflammation and fibrosis.
                Bookmark

                Author and article information

                Contributors
                katarzyna.kornicka@gmail.com
                lynda06bourebaba@gmail.com
                michael.roecken@vetmed.uni-giessen.de
                krzysztofmarycz@interia.pl
                Journal
                Cell Commun Signal
                Cell Commun Signal
                Cell Communication and Signaling : CCS
                BioMed Central (London )
                1478-811X
                3 November 2021
                3 November 2021
                2021
                : 19
                : 106
                Affiliations
                [1 ]GRID grid.411200.6, ISNI 0000 0001 0694 6014, Department of Experimental Biology, , Wroclaw University of Environmental and Life Sciences, ; Norwida 27B Street, A7 building, 50-375 Wroclaw, Poland
                [2 ]International Institute of Translational Medicine, Malin, Jesionowa 11, 55-114 Wisznia Mała, Poland
                [3 ]GRID grid.8664.c, ISNI 0000 0001 2165 8627, Faculty of Veterinary Medicine, Equine Clinic-Equine Surgery, , Justus-Liebig University, ; 35392 Giessen, Germany
                Author information
                http://orcid.org/0000-0002-2311-5789
                Article
                772
                10.1186/s12964-021-00772-5
                8565043
                34732209
                a6fd2dd2-9484-4f88-95c9-edddaa5b18e8
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 24 March 2021
                : 30 July 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100004281, Narodowe Centrum Nauki;
                Award ID: 2018/29/B/NZ7/02662
                Award ID: 2017/27/N/NZ7/02343
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2021

                Cell biology
                progenitor stem cells,adipogenesis,ptp1b,lmptp,mitochondria
                Cell biology
                progenitor stem cells, adipogenesis, ptp1b, lmptp, mitochondria

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content178

                Cited by7

                Most referenced authors394