2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of cross-talk pathways and ferroptosis-related genes in periodontitis and type 2 diabetes mellitus by bioinformatics analysis and experimental validation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          There is a bidirectional relationship between periodontitis and type 2 diabetes mellitus (T2DM). The aim of this study was to further explore the pathogenesis of this comorbidity, screen out ferroptosis-related genes involved in the pathological process, and predict potential drug targets to develop new therapeutic strategies.

          Methods

          Common cross-talk genes were identified from periodontitis datasets (GSE16134, GSE10334 and GSE106090) and T2DM databases (DisGeNET and GeneCard). Then, GO and KEGG enrichment analyses, PPI network analysis and hub gene identification were performed. The association between ferroptosis and periodontitis with T2DM was investigated by Pearson correlation analysis. Core ferroptosis-related cross-talk genes were identified and verified by qRT-PCR. Potential drugs targeting these core genes were predicted via DGIDB.

          Results

          In total, 67 cross-talk genes and two main signalling pathways (immuno-inflammatory pathway and AGE-RAGE signalling pathway) were identified. Pearson correlation analysis indicated that ferroptosis served as a crucial target in the pathological mechanism and treatment of periodontitis with T2DM. IL-1β, IL-6, NFE2L2 and ALOX5 were identified as core ferroptosis-related genes and the qRT-PCR detection results were statistically different. In total, 13 potential drugs were screened out, among which, Echinacea and Ibudilast should be developed first.

          Conclusions

          This study contributes to a deeper understanding of the common pathogenesis of periodontitis and T2DM and provides new insights into the role of ferroptosis in this comorbidity. In addition, two drugs with potential clinical application value were identified. The potential utility of these drugs requires further experimental investigation.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Global aetiology and epidemiology of type 2 diabetes mellitus and its complications

          Globally, the number of people with diabetes mellitus has quadrupled in the past three decades, and diabetes mellitus is the ninth major cause of death. About 1 in 11 adults worldwide now have diabetes mellitus, 90% of whom have type 2 diabetes mellitus (T2DM). Asia is a major area of the rapidly emerging T2DM global epidemic, with China and India the top two epicentres. Although genetic predisposition partly determines individual susceptibility to T2DM, an unhealthy diet and a sedentary lifestyle are important drivers of the current global epidemic; early developmental factors (such as intrauterine exposures) also have a role in susceptibility to T2DM later in life. Many cases of T2DM could be prevented with lifestyle changes, including maintaining a healthy body weight, consuming a healthy diet, staying physically active, not smoking and drinking alcohol in moderation. Most patients with T2DM have at least one complication, and cardiovascular complications are the leading cause of morbidity and mortality in these patients. This Review provides an updated view of the global epidemiology of T2DM, as well as dietary, lifestyle and other risk factors for T2DM and its complications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040.

            To produce current estimates of the national, regional and global impact of diabetes for 2015 and 2040.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Free radicals and antioxidants in normal physiological functions and human disease.

              Reactive oxygen species (ROS) and reactive nitrogen species (RNS, e.g. nitric oxide, NO(*)) are well recognised for playing a dual role as both deleterious and beneficial species. ROS and RNS are normally generated by tightly regulated enzymes, such as NO synthase (NOS) and NAD(P)H oxidase isoforms, respectively. Overproduction of ROS (arising either from mitochondrial electron-transport chain or excessive stimulation of NAD(P)H) results in oxidative stress, a deleterious process that can be an important mediator of damage to cell structures, including lipids and membranes, proteins, and DNA. In contrast, beneficial effects of ROS/RNS (e.g. superoxide radical and nitric oxide) occur at low/moderate concentrations and involve physiological roles in cellular responses to noxia, as for example in defence against infectious agents, in the function of a number of cellular signalling pathways, and the induction of a mitogenic response. Ironically, various ROS-mediated actions in fact protect cells against ROS-induced oxidative stress and re-establish or maintain "redox balance" termed also "redox homeostasis". The "two-faced" character of ROS is clearly substantiated. For example, a growing body of evidence shows that ROS within cells act as secondary messengers in intracellular signalling cascades which induce and maintain the oncogenic phenotype of cancer cells, however, ROS can also induce cellular senescence and apoptosis and can therefore function as anti-tumourigenic species. This review will describe the: (i) chemistry and biochemistry of ROS/RNS and sources of free radical generation; (ii) damage to DNA, to proteins, and to lipids by free radicals; (iii) role of antioxidants (e.g. glutathione) in the maintenance of cellular "redox homeostasis"; (iv) overview of ROS-induced signaling pathways; (v) role of ROS in redox regulation of normal physiological functions, as well as (vi) role of ROS in pathophysiological implications of altered redox regulation (human diseases and ageing). Attention is focussed on the ROS/RNS-linked pathogenesis of cancer, cardiovascular disease, atherosclerosis, hypertension, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases (Alzheimer's disease and Parkinson's disease), rheumatoid arthritis, and ageing. Topics of current debate are also reviewed such as the question whether excessive formation of free radicals is a primary cause or a downstream consequence of tissue injury.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                29 September 2022
                2022
                : 13
                : 1015491
                Affiliations
                [1] 1 College of Stomatology, Chongqing Medical University , Chongqing, China
                [2] 2 Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences , Chongqing, China
                [3] 3 Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing, China
                Author notes

                Edited by: Pedro Paulo Chaves Souza, Universidade Federal de Goiás, Brazil

                Reviewed by: Dogukan Yilmaz, University of Turku, Finland; Raquel Mantuaneli Scarel-Caminaga, Universidade Estadual Paulista, Brazil; Jeffrey Ebersole, University of Nevada, Las Vegas, United States

                †These authors have contributed equally to this work and share first authorship

                This article was submitted to Inflammation, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2022.1015491
                9556735
                36248844
                a6e4a5c5-826f-4968-b3e6-e6eaf34f40ee
                Copyright © 2022 Pan, Hu, Sun, Yang, Yu, He, Gao and Song

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 August 2022
                : 13 September 2022
                Page count
                Figures: 7, Tables: 2, Equations: 0, References: 70, Pages: 14, Words: 4915
                Funding
                Funded by: Chongqing Research Program of Basic Research and Frontier Technology , doi 10.13039/501100013223;
                Funded by: National Natural Science Foundation of China , doi 10.13039/501100001809;
                Categories
                Immunology
                Original Research

                Immunology
                ferroptosis,drug prediction,periodontitis,type 2 diabetes mellitus,pathway
                Immunology
                ferroptosis, drug prediction, periodontitis, type 2 diabetes mellitus, pathway

                Comments

                Comment on this article