16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Moving beyond landscape resistance: considerations for the future of connectivity modelling and conservation science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Landscape connectivity, the extent to which a landscape facilitates the flow of ecological processes such as organism movement, has emerged as a central focus of landscape ecology and conservation science. Connectivity modelling now encompasses an enormous body of work across ecological theory and application. The dominant connectivity models in use today are based on the framework of ‘landscape resistance’, which is a way of measuring how landscape structure influences movement patterns. However, the simplistic assumptions and high degree of reductionism inherent to the landscape resistance paradigm severely limits the ability of connectivity algorithms to account for many fundamental aspects of animal movement, and thus greatly reduces the effectiveness and relevance of connectivity models for conservation theory and practice. In this paper, we first provide an overview of the development of connectivity modelling and resistance surfaces. We then discuss several key drivers of animal movement which are absent in resistance-based models, with a focus on spatiotemporal variation, human and interspecies interactions, and other context-dependent effects. We look at a range of empirical studies which highlight the strong impact these effects have on movement and connectivity predictions. But we also provide promising avenues of future research to address this: we discuss newly emerging technologies and interdisciplinary work, and look to developing methodologies, models and conversations which move beyond the limiting framework of landscape resistance, so that connectivity models can better reflect the complexities and richness of animal movement.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: not found
          • Article: not found

          Multimodel Inference: Understanding AIC and BIC in Model Selection

          K. Burnham (2004)
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Effects of Habitat Fragmentation on Biodiversity

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Random walk models in biology.

              Mathematical modelling of the movement of animals, micro-organisms and cells is of great relevance in the fields of biology, ecology and medicine. Movement models can take many different forms, but the most widely used are based on the extensions of simple random walk processes. In this review paper, our aim is twofold: to introduce the mathematics behind random walks in a straightforward manner and to explain how such models can be used to aid our understanding of biological processes. We introduce the mathematical theory behind the simple random walk and explain how this relates to Brownian motion and diffusive processes in general. We demonstrate how these simple models can be extended to include drift and waiting times or be used to calculate first passage times. We discuss biased random walks and show how hyperbolic models can be used to generate correlated random walks. We cover two main applications of the random walk model. Firstly, we review models and results relating to the movement, dispersal and population redistribution of animals and micro-organisms. This includes direct calculation of mean squared displacement, mean dispersal distance, tortuosity measures, as well as possible limitations of these model approaches. Secondly, oriented movement and chemotaxis models are reviewed. General hyperbolic models based on the linear transport equation are introduced and we show how a reinforced random walk can be used to model movement where the individual changes its environment. We discuss the applications of these models in the context of cell migration leading to blood vessel growth (angiogenesis). Finally, we discuss how the various random walk models and approaches are related and the connections that underpin many of the key processes involved.
                Bookmark

                Author and article information

                Journal
                Landscape Ecology
                Landsc Ecol
                Springer Science and Business Media LLC
                0921-2973
                1572-9761
                October 2022
                August 13 2022
                October 2022
                : 37
                : 10
                : 2465-2480
                Article
                10.1007/s10980-022-01504-x
                a6d11e7b-25a8-447b-8950-023ecf32c25e
                © 2022

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article