17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In response to various environmental stresses, many plant species synthesize L-proline in the cytosol and accumulates in the chloroplasts. L-Proline accumulation in plants is a well-recognized physiological reaction to osmotic stress prompted by salinity, drought and other abiotic stresses. L-Proline plays several protective functions such as osmoprotectant, stabilizing cellular structures, enzymes, and scavenging reactive oxygen species (ROS), and keeps up redox balance in adverse situations. In addition, ample-studied osmoprotective capacity, L-proline has been also ensnared in the regulation of plant improvement, including flowering, pollen, embryo, and leaf enlargement.

          Scope and conclusions

          Albeit, ample is now well-known about L-proline metabolism, but certain characteristics of its biological roles are still indistinct. In the present review, we discuss the L-proline accumulation, metabolism, signaling, transport and regulation in the plants. We also discuss the effects of exogenous L-proline during different environmental conditions. L-Proline biosynthesis and catabolism are controlled by several cellular mechanisms, of which we identify only very fewer mechanisms. So, in the future, there is a requirement to identify such types of cellular mechanisms.

          Abstract

          L-Proline; Osmoprotectant; Environmental stresses; Cellular mechanisms; Signal transduction, Biochemistry, Molecular biology, Cell Biology, Plant Biology.

          Related collections

          Most cited references286

          • Record: found
          • Abstract: not found
          • Article: not found

          Roles of glycine betaine and proline in improving plant abiotic stress resistance

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genes and salt tolerance: bringing them together.

            Rana Munns (2005)
            Salinity tolerance comes from genes that limit the rate of salt uptake from the soil and the transport of salt throughout the plant, adjust the ionic and osmotic balance of cells in roots and shoots, and regulate leaf development and the onset of senescence. This review lists some candidate genes for salinity tolerance, and draws together hypotheses about the functions of these genes and the specific tissues in which they might operate. Little has been revealed by gene expression studies so far, perhaps because the studies are not tissue-specific, and because the treatments are often traumatic and unnatural. Suggestions are made to increase the value of molecular studies in identifying genes that are important for salinity tolerance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress.

              Plants exposed to heavy metals accumulate an array of metabolites, some to high millimolar concentrations. This review deals with N-containing metabolites frequently preferentially synthesized under heavy metal stress such as Cd, Cu, Ni, and Zn. Special focus is given to proline, but certain other amino acids and oligopeptides, as well as betaine, polyamines, and nicotianamine are also addressed. Particularly for proline a large body of data suggests significant beneficial functions under metal stress. In general, the molecules have three major functions, namely metal binding, antioxidant defence, and signalling. Strong correlative and mechanistic experimental evidence, including work with transgenic plants and algae, has been provided that indicates the involvement of metal-induced proline in metal stress defence. Histidine, other amino acids and particularly phytochelatins and glutathione play a role in metal binding, while polyamines function as signalling molecules and antioxidants. Their accumulation needs to be considered as active response and not as consequence of metabolic dys-regulation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                09 December 2019
                December 2019
                09 December 2019
                : 5
                : 12
                : e02952
                Affiliations
                [a ]Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, India
                [b ]Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
                [c ]International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
                Author notes
                Article
                S2405-8440(19)36611-3 e02952
                10.1016/j.heliyon.2019.e02952
                6909094
                31872123
                a6c92a81-9178-48c0-8882-16abc6ab7a6f
                © 2019 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 30 July 2019
                : 28 September 2019
                : 25 November 2019
                Categories
                Article

                l-proline,osmoprotectant,environmental stresses,cellular mechanisms,signal transduction,biochemistry,molecular biology,cell biology,plant biology

                Comments

                Comment on this article