13
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Epidemiology of CKD and its Complications

      Submit here by August 31, 2024

      About Kidney and Blood Pressure Research: 2.3 Impact Factor I 4.8 CiteScore I 0.674 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Integrative in silico Study to Discover Key Drivers in Pathogenicity of Focal and Segmental Glomerulosclerosis

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Focal and segmental glomerulosclerosis (FSGS) is a clinical-pathologic condition marked by segmental and localized glomerular damages. Despite investigations, the molecular mechanisms behind FSGS development remain to be more clarified. By a comprehensive analysis of an FSGS-related array set, the aim of this study was to unravel the top pathways and molecules involved in the pathogenesis of this disorder. Methods: FSGS-related microarray dataset (GSE129973) from the Gene Expression Omnibus database was quality checked, analyzed, and its differentially expressed genes (DEGs) (log2 fold change > 1) were used for the construction of a protein-protein interaction (PPI) network (STRING). The degree of centrality was considered to select the hub molecules in the network. The weighted gene co-expression network analysis (WGCNA) was utilized to construct co-expression modules. Hub molecules were selected based on module membership and gene significance values in the disease’s most correlated module. After spotting the key molecules considering both strategies, their expression pattern was checked in other FSGS microarray datasets. Gene ontology and Reactome pathway enrichment analyses were performed on the DEGs of the related module. Results: After quality checking, normalization, and analysis of the dataset, 5,296 significant DEGs, including 2,469 upregulated and 2,827 downregulated DEGs were identified. The WGCNA algorithm clustered the DEGs into nine independent co-expression modules. The disease most correlated module (black module) was recognized and considered for further enrichment analysis. The immune system, cell cycle, and vesicle-mediated transports were among the top enriched terms for the identified module’s DEGs. The immune system, cell cycle, and vesicle-mediated transports were among the top enriched terms for the black module’s DEGs. The key molecules ( BMP-2 and COL4A1) were identified as common hub molecules extracted from the two methods of PPI and the co-expressed networks. The two identified key molecules were validated in other FSGS datasets, where a similar pattern of expression was observed for both the genes. Conclusions: Two hub molecules ( BMP-2 and COL4A) and some pathways (vesicle-mediated transport) were recognized as potential players in the pathogenesis of FSGS.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Cytoscape: a software environment for integrated models of biomolecular interaction networks.

          Cytoscape is an open source software project for integrating biomolecular interaction networks with high-throughput expression data and other molecular states into a unified conceptual framework. Although applicable to any system of molecular components and interactions, Cytoscape is most powerful when used in conjunction with large databases of protein-protein, protein-DNA, and genetic interactions that are increasingly available for humans and model organisms. Cytoscape's software Core provides basic functionality to layout and query the network; to visually integrate the network with expression profiles, phenotypes, and other molecular states; and to link the network to databases of functional annotations. The Core is extensible through a straightforward plug-in architecture, allowing rapid development of additional computational analyses and features. Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            WGCNA: an R package for weighted correlation network analysis

            Background Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial. Results The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings. Conclusion The WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at .
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets

              Abstract Proteins and their functional interactions form the backbone of the cellular machinery. Their connectivity network needs to be considered for the full understanding of biological phenomena, but the available information on protein–protein associations is incomplete and exhibits varying levels of annotation granularity and reliability. The STRING database aims to collect, score and integrate all publicly available sources of protein–protein interaction information, and to complement these with computational predictions. Its goal is to achieve a comprehensive and objective global network, including direct (physical) as well as indirect (functional) interactions. The latest version of STRING (11.0) more than doubles the number of organisms it covers, to 5090. The most important new feature is an option to upload entire, genome-wide datasets as input, allowing users to visualize subsets as interaction networks and to perform gene-set enrichment analysis on the entire input. For the enrichment analysis, STRING implements well-known classification systems such as Gene Ontology and KEGG, but also offers additional, new classification systems based on high-throughput text-mining as well as on a hierarchical clustering of the association network itself. The STRING resource is available online at https://string-db.org/.
                Bookmark

                Author and article information

                Journal
                KBR
                Kidney Blood Press Res
                10.1159/issn.1420-4096
                Kidney and Blood Pressure Research
                S. Karger AG
                1420-4096
                1423-0143
                2022
                June 2022
                18 March 2022
                : 47
                : 6
                : 410-422
                Affiliations
                [_a] aRegenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
                [_b] bNutrition and Bromatology Group, Department of Analytical and Food Chemistry, Science Faculty, University of Vigo, Ourense, Spain
                Author information
                https://orcid.org/0000-0003-0329-2937
                https://orcid.org/0000-0002-2046-9469
                https://orcid.org/0000-0001-9215-9737
                Article
                524133 Kidney Blood Press Res 2022;47:410–422
                10.1159/000524133
                35306494
                a6c2684c-0de4-4bff-9cb7-35c28366b57f
                © 2022 The Author(s). Published by S. Karger AG, Basel

                This article is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC). Usage and distribution for commercial purposes requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 13 November 2021
                : 13 March 2022
                Page count
                Figures: 6, Tables: 1, Pages: 13
                Categories
                Research Article

                Cardiovascular Medicine,Nephrology
                Glomerulosclerosis,Drug target,Weighted gene co-expression network,Segmental glomerulosclerosis

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content601

                Cited by3

                Most referenced authors917