11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Building a 5-HT3A Receptor Expression Map in the Mouse Brain

      research-article
      1 , a , 1 , 1
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Of the many serotonin receptors, the type 3 receptors (5-HT3R) are the only ionotropic ones, playing a key role in fast synaptic transmission and cognitive and emotional brain function through controlled neuronal excitation. To better understand the various functions of 5-HT3Rs, it is very important to know their expression pattern in the central nervous system (CNS). To date, many distributional studies have shown localized 5-HT3R expression in the brain and spinal cord. However, an accurate pattern of 5-HT3R expression in the CNS remains to be elucidated. To investigate the distribution of 5-HT3R in the mouse brain in detail, we performed immunofluorescent staining using 5-HT3AR-GFP transgenic mice. We found strong 5-HT3AR expression in the olfactory bulb, cerebral cortex, hippocampus, and amygdala; and partial expression in the pons, medulla, and spinal cord. Meanwhile, the thalamus, hypothalamus, and midbrain exhibited a few 5-HT3AR-expressing cells, and no expression was detected in the cerebellum. Further, double-immunostaining using neural markers confirmed that 5-HT3AR is expressed in GABAergic interneurons containing somatostatin or calretinin. In the present study, we built a 5-HT3AR expression map in the mouse brain. Our findings make significant contributions in elucidating the novel functions of 5-HT3R in the CNS.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors.

          A highly diverse population of neocortical GABAergic inhibitory interneurons has been implicated in multiple functions in information processing within cortical circuits. The diversity of cortical interneurons is determined during development and primarily depends on their embryonic origins either from the medial (MGE) or the caudal (CGE) ganglionic eminences. Although MGE-derived parvalbumin (PV)- or somatostatin (SST)-expressing interneurons are well characterized, less is known about the other types of cortical GABAergic interneurons, especially those of CGE lineage, because of the lack of specific neuronal markers for these interneuron subtypes. Using a bacterial artificial chromosome transgenic mouse line, we show that, in the somatosensory cortex of the mouse, the serotonin 5-hydroxytryptamine 3A (5-HT(3A)) receptor, the only ionotropic serotonergic receptor, is expressed in most, if not all, neocortical GABAergic interneurons that do not express PV or SST. Genetic fate mapping and neurochemical profile demonstrate that 5-HT(3A)R-expressing neurons include the entire spectrum of CGE-derived interneurons. We report that, in addition to serotonergic responsiveness via 5-HT(3A)Rs, acetylcholine also depolarizes 5-HT(3A)R-expressing neurons via nicotinic receptors. 5-HT(3A)R-expressing neurons in thalamocortical (TC) recipient areas receive weak but direct monosynaptic inputs from the thalamus. TC input depolarizes a subset of TC-recipient 5-HT(3A)R neurons as strongly as fast-spiking cells, in part because of their high input resistance. Hence, fast modulation of serotonergic and cholinergic transmission may influence cortical activity through an enhancement of GABAergic synaptic transmission from 5-HT(3A)R-expressing neurons during sensory process depending on different behavioral states.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel.

            The neurotransmitter serotonin (5HT) activates a variety of second messenger signaling systems and through them indirectly regulates the function of ion channels. Serotonin also activates ion channels directly, suggesting that it may also mediate rapid, excitatory responses. A complementary DNA clone containing the coding sequence of one of these rapidly responding channels, a 5HT3 subtype of the serotonin receptor, has been isolated by screening a neuroblastoma expression library for functional expression of serotonin-gated currents in Xenopus oocytes. The predicted protein product has many of the features shared by other members of the ligand-gated ion channel family. The pharmacological and electrophysiological characteristics of the cloned receptor are largely consistent with the properties of native 5HT3 receptors. Messenger RNA encoding this receptor is found in the brain, spinal cord, and heart. This receptor defines a new class of excitatory ligand-gated channels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurogenesis and widespread forebrain migration of distinct GABAergic neurons from the postnatal subventricular zone.

              Most forebrain GABAergic interneurons in rodents are born during embryonic development in the ganglionic eminences (GE) and migrate tangentially into the cortical plate. A subset, however, continues to be generated postnatally in the subventricular zone (SVZ). These interneurons populate the olfactory bulb (OB) reached via migration in the rostral migratory stream (RMS). Employing transgenic mice expressing EGFP in 5-HT(3)-positive neurons, we identified additional migratory pathways in the early postnatal brain. Time-lapse imaging experiments revealed massive migration of EGFP-positive cells from the SVZ into numerous forebrain regions, including cortex, striatum, and nucleus accumbens. The neuronal fate of the migratory EGFP-labeled cells was indicated by their doublecortin (DCX) expression. Birthdating experiments, by using 5-bromo-2'-deoxyuridine (BrdU) and retrovirus-based experiments, provided evidence that migrating neuroblasts were born in the SVZ postnatally and developed a distinct GABAergic phenotype. Our results demonstrate that the SVZ is a reservoir of GABAergic interneurons not only for the OB, but also for other cortical and subcortical areas.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                09 March 2017
                2017
                : 7
                : 42884
                Affiliations
                [1 ]Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine , Osaka 565-0871, Japan
                Author notes
                Article
                srep42884
                10.1038/srep42884
                5343592
                28276429
                a6974924-33e7-436b-a323-9cb8b1f5c05a
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 25 August 2016
                : 16 January 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article