7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Boric acid-based ternary deep eutectic solvent for extraction and oxidative desulfurization of diesel fuel

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ternary deep eutectic solvents were used for ODS of fuels (DESs) for the first time although most research continues to be focused on binary DESs.

          Abstract

          Deep eutectic solvents (DESs) have been intensively investigated as promising “green” solvents for a range of industrial processes, although most research continues to be focused on binary DESs. This paper reports on a class of ternary DESs formed by choline chloride (ChCl), polyethylene glycol (PEG), and boric acid (BA) that may be viewed as a new system for extraction and oxidative desulfurization (ODS) of diesel fuel. Compared with organic acid-based DESs, ternary DESs offer advantages including low volatility, low toxicity, and high activity. After tuning the molar ratio of the three compositions, sulfur removal reached 99.2% in 2 h at 60 °C when the molar ratio of H 2O 2 to dibenzothiophene was 6. The binary DESs, ChCl/PEG and ChCl/BA, showed unsatisfactory extraction and oxidation efficiency. The reaction mechanism identified through experimental and theoretical methods showed that superoxide radical may be the main active oxygen species, and BA-based peroxides may also play an important role. The results of this study may expand the use of BA and supply a new class of DESs for ODS and other possible applications.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: not found
          • Article: not found

          The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Deep eutectic solvents: syntheses, properties and applications.

            Within the framework of green chemistry, solvents occupy a strategic place. To be qualified as a green medium, these solvents have to meet different criteria such as availability, non-toxicity, biodegradability, recyclability, flammability, and low price among others. Up to now, the number of available green solvents are rather limited. Here we wish to discuss a new family of ionic fluids, so-called Deep Eutectic Solvents (DES), that are now rapidly emerging in the current literature. A DES is a fluid generally composed of two or three cheap and safe components that are capable of self-association, often through hydrogen bond interactions, to form a eutectic mixture with a melting point lower than that of each individual component. DESs are generally liquid at temperatures lower than 100 °C. These DESs exhibit similar physico-chemical properties to the traditionally used ionic liquids, while being much cheaper and environmentally friendlier. Owing to these remarkable advantages, DESs are now of growing interest in many fields of research. In this review, we report the major contributions of DESs in catalysis, organic synthesis, dissolution and extraction processes, electrochemistry and material chemistry. All works discussed in this review aim at demonstrating that DESs not only allow the design of eco-efficient processes but also open a straightforward access to new chemicals and materials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids.

              Deep Eutectic Solvents (DES) can be formed between a variety of quaternary ammonium salts and carboxylic acids. The physical properties are significantly affected by the structure of the carboxylic acid but the phase behavior of the mixtures can be simply modeled by taking account of the mole fraction of carboxylic acid in the mixture. The physical properties such as viscosity, conductivity, and surface tension of these DES are similar to ambient temperature ionic liquids and insight into the cause of these properties is gained using hole-theory. It is shown that the conductivity and viscosity of these liquids is controlled by ion mobility and the availability of voids of suitable dimensions, and this is consistent with the fluidity of other ionic liquids and molten salts. The DES are also shown to be good solvents for metal oxides, which could have potential application for metal extraction.
                Bookmark

                Author and article information

                Contributors
                Journal
                GRCHFJ
                Green Chemistry
                Green Chem.
                Royal Society of Chemistry (RSC)
                1463-9262
                1463-9270
                June 4 2019
                2019
                : 21
                : 11
                : 3074-3080
                Affiliations
                [1 ]Institute for Energy Research
                [2 ]Zhenjiang 212013
                [3 ]P. R. China
                [4 ]Department of Chemistry
                [5 ]University of Tennessee Knoxville
                [6 ]School of Chemistry and Chemical Engineering
                [7 ]Jiangsu University
                [8 ]USA
                [9 ]Chemical Science Division
                [10 ]Oak Ridge National Laboratory
                Article
                10.1039/C9GC01004A
                a692a966-710f-4439-9442-c3be684d704e
                © 2019

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article