12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Pathogenic Relationship of Bronchopulmonary Dysplasia and Retinopathy of Prematurity? A Review of Angiogenic Mediators in Both Diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bronchopulmonary dysplasia (BPD) and retinopathy of prematurity (ROP) are common and significant morbidities of prematurely born infants. These diseases have in common altered and pathologic vascular formation in the face of incomplete organ development. Therefore, it is reasonable to question whether factors affecting angiogenesis could have a joint pathogenic role for both diseases. Inhibition or induced expression of a single angiogenic factor is unlikely to be 100% causative or protective of either of BPD or ROP. It is more likely that interactions of multiple factors leading to disordered angiogenesis are present, increasing the likelihood of common pathways in both diseases. This review explores this possibility by assessing the evidence showing involvement of specific angiogenic factors in the vascular development and maldevelopment in each disease. Theoretical interactions of specific factors mutually contributing to BPD and ROP are proposed and, where possible, a timeline of the proposed relationships between BPD and ROP is developed. It is hoped that future research will be inspired by the theories put forth in this review to enhance the understanding of the pathogenesis in both diseases.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: not found

          Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity.

          Retinopathy of prematurity is a leading cause of childhood blindness worldwide. Peripheral retinal ablation with conventional (confluent) laser therapy is destructive, causes complications, and does not prevent all vision loss, especially in cases of retinopathy of prematurity affecting zone I of the eye. Case series in which patients were treated with vascular endothelial growth factor inhibitors suggest that these agents may be useful in treating retinopathy of prematurity. We conducted a prospective, controlled, randomized, stratified, multicenter trial to assess intravitreal bevacizumab monotherapy for zone I or zone II posterior stage 3+ (i.e., stage 3 with plus disease) retinopathy of prematurity. Infants were randomly assigned to receive intravitreal bevacizumab (0.625 mg in 0.025 ml of solution) or conventional laser therapy, bilaterally. The primary ocular outcome was recurrence of retinopathy of prematurity in one or both eyes requiring retreatment before 54 weeks' postmenstrual age. We enrolled 150 infants (total sample of 300 eyes); 143 infants survived to 54 weeks' postmenstrual age, and the 7 infants who died were not included in the primary-outcome analyses. Retinopathy of prematurity recurred in 4 infants in the bevacizumab group (6 of 140 eyes [4%]) and 19 infants in the laser-therapy group (32 of 146 eyes [22%], P=0.002). A significant treatment effect was found for zone I retinopathy of prematurity (P=0.003) but not for zone II disease (P=0.27). Intravitreal bevacizumab monotherapy, as compared with conventional laser therapy, in infants with stage 3+ retinopathy of prematurity showed a significant benefit for zone I but not zone II disease. Development of peripheral retinal vessels continued after treatment with intravitreal bevacizumab, but conventional laser therapy led to permanent destruction of the peripheral retina. This trial was too small to assess safety. (Funded by Research to Prevent Blindness and others; ClinicalTrials.gov number, NCT00622726.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF.

            Little is known about how the initial endothelial plexus is remodelled into a mature and functioning vascular network. Studying postnatal remodelling of the retina vasculature, we show that a critical step in vascular maturation, namely pericyte recruitment, proceeds by outmigration of cells positive for (alpha)-smooth muscle actin from arterioles and that coverage of primary and smaller branches lags many days behind formation of the endothelial plexus. The transient existence of a pericyte-free endothelial plexus coincides temporally and spatially with the process of hyperoxia-induced vascular pruning, which is a mechanism for fine tuning of vascular density according to available oxygen. Acquisition of a pericyte coating marks the end of this plasticity window. To substantiate that association with pericytes stabilizes the vasculature, endothelial-pericyte associations were disrupted by intraocular injection of PDGF-BB. Ectopic PDGF-BB caused the detachment of PDGF-beta receptor-positive pericytes from newly coated vessels, presumably through interference with endogenous cues, but had no effect on mature vessels. Disruption of endothelial-pericyte associations resulted in excessive regression of vascular loops and abnormal remodelling. Conversely, intraocular injection of VEGF accelerated pericyte coverage of the preformed endothelial plexus, thereby revealing a novel function of this pleiotropic angiogenic growth factor. These findings also provide a cellular basis for clinical observations that vascular regression in premature neonates subjected to oxygen therapy [i.e. in retinopathy of prematurity] drops precipitously upon maturation of retina vessels and a mechanistic explanation to our previous findings that VEGF can rescue immature vessels from hyperoxia-induced regression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The new bronchopulmonary dysplasia.

              Alan Jobe (2011)
              Bronchopulmonary dysplasia (BPD) remains the most common severe complication of preterm birth. A number of recent animal models and clinical studies provide new information about pathophysiology and treatment. The epidemiology of BPD continues to demonstrate that birth weight and gestational age are most predictive of BPD. Correlations of BPD with chorioamnionitis are clouded by the complexity of the fetal exposures to inflammation. Excessive oxygen use in preterm infants can increase the risk of BPD but low saturation targets may increase death. Numerous recent trials demonstrate that many preterm infants can be initially stabilized after delivery with continuous positive airway response (CPAP) and then be selectively treated with surfactant for respiratory distress syndrome. The growth of the lungs of the infant with BPD through childhood remains poorly characterized. Recent experiences in neonatology suggest that combining less invasive care strategies that avoid excessive oxygen and ventilation, decrease postnatal infections, and optimize nutrition may decrease the incidence and severity of BPD.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pediatr
                Front Pediatr
                Front. Pediatr.
                Frontiers in Pediatrics
                Frontiers Media S.A.
                2296-2360
                13 June 2018
                2018
                : 6
                : 125
                Affiliations
                [1] 1Tufts University School of Medicine , Boston, MA, United States
                [2] 2Division of Newborn Medicine, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center , Boston, MA, United States
                [3] 3Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine , Boston, MA, United States
                Author notes

                Edited by: Juan Sanchez-Esteban, Alpert Medical School, Brown University, United States

                Reviewed by: Vineet Bhandari, College of Medicine, Drexel University, United States; Naveed Hussain, University of Connecticut Health Center, United States

                *Correspondence: MaryAnn V. Volpe mvolpe1@ 123456tuftsmedicalcenter.org

                This article was submitted to Neonatology, a section of the journal Frontiers in Pediatrics

                †Co-senior authors.

                Article
                10.3389/fped.2018.00125
                6008318
                29951473
                a68178ae-e02b-464c-affa-e611ac837080
                Copyright © 2018 Stark, Dammann, Nielsen and Volpe.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 November 2017
                : 16 April 2018
                Page count
                Figures: 4, Tables: 1, Equations: 0, References: 121, Pages: 14, Words: 12386
                Categories
                Pediatrics
                Review

                bronchopulmonary dysplasia,retinopathy of prematurity,vasculogenesis,prematurity,angiogenesis

                Comments

                Comment on this article