8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanisms of Fluoride Toxicity: From Enzymes to Underlying Integrative Networks

      ,
      Applied Sciences
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fluoride has been employed in laboratory investigations since the early 20th century. These studies opened the understanding of fluoride interventions to fundamental biological processes. Millions of people living in endemic fluorosis areas suffer from various pathological disturbances. The practice of community water fluoridation used prophylactically against dental caries increased concern of adverse fluoride effects. We assessed the publications on fluoride toxicity until June 2020. We present evidence that fluoride is an enzymatic poison, inducing oxidative stress, hormonal disruptions, and neurotoxicity. Fluoride in synergy with aluminum acts as a false signal in G protein cascades of hormonal and neuronal regulations in much lower concentrations than fluoride acting alone. Our review shows the impact of fluoride on human health. We suggest focusing the research on fluoride toxicity to the underlying integrative networks. Ignorance of the pluripotent toxic effects of fluoride might contribute to unexpected epidemics in the future.

          Related collections

          Most cited references162

          • Record: found
          • Abstract: found
          • Article: not found

          Heterotrimeric G protein activation by G-protein-coupled receptors.

          Heterotrimeric G proteins have a crucial role as molecular switches in signal transduction pathways mediated by G-protein-coupled receptors. Extracellular stimuli activate these receptors, which then catalyse GTP-GDP exchange on the G protein alpha-subunit. The complex series of interactions and conformational changes that connect agonist binding to G protein activation raise various interesting questions about the structure, biomechanics, kinetics and specificity of signal transduction across the plasma membrane.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            G Protein-Coupled Receptors as Targets for Approved Drugs: How Many Targets and How Many Drugs?

            Estimates vary regarding the number of G protein-coupled receptors (GPCRs), the largest family of membrane receptors that are targeted by approved drugs, and the number of such drugs that target GPCRs. We review current knowledge regarding GPCRs as drug targets by integrating data from public databases (ChEMBL, Guide to PHARMACOLOGY, and DrugBank) and from the Broad Institute Drug Repurposing Hub. To account for discrepancies among these sources, we curated a list of GPCRs currently targeted by approved drugs. As of November 2017, 134 GPCRs are targets for drugs approved in the United States or European Union; 128 GPCRs are targets for drugs listed in the Food and Drug Administration Orange Book. We estimate that ∼700 approved drugs target GPCRs, implying that approximately 35% of approved drugs target GPCRs. GPCRs and GPCR-related proteins, i.e., those upstream of or downstream from GPCRs, represent ∼17% of all protein targets for approved drugs, with GPCRs themselves accounting for ∼12%. As such, GPCRs constitute the largest family of proteins targeted by approved drugs. Drugs that currently target GPCRs and GPCR-related proteins are primarily small molecules and peptides. Since ∼100 of the ∼360 human endo-GPCRs (other than olfactory, taste, and visual GPCRs) are orphan receptors (lacking known physiologic agonists), the number of GPCR targets, the number of GPCR-targeted drugs, and perhaps the types of drugs will likely increase, thus further expanding this GPCR repertoire and the many roles of GPCR drugs in therapeutics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurobehavioural effects of developmental toxicity.

              Neurodevelopmental disabilities, including autism, attention-deficit hyperactivity disorder, dyslexia, and other cognitive impairments, affect millions of children worldwide, and some diagnoses seem to be increasing in frequency. Industrial chemicals that injure the developing brain are among the known causes for this rise in prevalence. In 2006, we did a systematic review and identified five industrial chemicals as developmental neurotoxicants: lead, methylmercury, polychlorinated biphenyls, arsenic, and toluene. Since 2006, epidemiological studies have documented six additional developmental neurotoxicants-manganese, fluoride, chlorpyrifos, dichlorodiphenyltrichloroethane, tetrachloroethylene, and the polybrominated diphenyl ethers. We postulate that even more neurotoxicants remain undiscovered. To control the pandemic of developmental neurotoxicity, we propose a global prevention strategy. Untested chemicals should not be presumed to be safe to brain development, and chemicals in existing use and all new chemicals must therefore be tested for developmental neurotoxicity. To coordinate these efforts and to accelerate translation of science into prevention, we propose the urgent formation of a new international clearinghouse. Copyright © 2014 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                ASPCC7
                Applied Sciences
                Applied Sciences
                MDPI AG
                2076-3417
                October 2020
                October 13 2020
                : 10
                : 20
                : 7100
                Article
                10.3390/app10207100
                a6751602-9800-4f69-97a4-3ae9326e0a59
                © 2020

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article