57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The roles and regulation of potassium in bacteria.

      Progress in nucleic acid research and molecular biology
      Bacteria, metabolism, Hydrogen-Ion Concentration, Intracellular Fluid, Ion Transport, Potassium, Potassium Channels

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Potassium is the major intracellular cation in bacteria as well as in eucaryotic cells. Bacteria accumulate K+ by a number of different transport systems that vary in kinetics, energy coupling, and regulation. The Trk and Kdp systems of enteric organisms have been well studied and are found in many distantly related species. The Ktr system, resembling Trk in many ways, is also found in many bacteria. In most species two or more independent saturable K(+)-transport systems are present. The KefB and KefC type of system that is activated by treatment of cells with toxic electrophiles is the only specific K(+)-efflux system that has been well characterized. Pressure-activated channels of at least three types are found in bacteria; these represent nonspecific paths of efflux when turgor pressure is dangerously high. A close homolog of eucaryotic K+ channels is found in many bacteria, but its role remains obscure. K+ transporters are regulated both by ion concentrations and turgor. A very general property is activation of K+ uptake by an increase in medium osmolarity. This response is modulated by both internal and external concentrations of K+. Kdp is the only K(+)-transport system whose expression is regulated by environmental conditions. Decrease in turgor pressure and/or reduction in external K+ rapidly increase expression of Kdp. The signal created by these changes, inferred to be reduced turgor, is transmitted by the KdpD sensor kinase to the KdpE-response regulator that in turn stimulates transcription of the kdp genes. K+ acts as a cytoplasmic-signaling molecule, activating and/or inducing enzymes and transport systems that allow the cell to adapt to elevated osmolarity. The signal could be ionic strength or specifically K+. This signaling response is probably mediated by a direct sensing of internal ionic strength by each particular system and not by a component or system that coordinates this response by different systems to elevated K+.

          Related collections

          Author and article information

          Journal
          14604015
          10.1016/s0079-6603(03)75008-9

          Chemistry
          Bacteria,metabolism,Hydrogen-Ion Concentration,Intracellular Fluid,Ion Transport,Potassium,Potassium Channels

          Comments

          Comment on this article