0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Association of long-term triglyceride-glucose index patterns with the incidence of chronic kidney disease among non-diabetic population: evidence from a functional community cohort

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The triglyceride-glucose (TyG) index is a reliable surrogate marker of insulin resistance and previous studies have confirmed the association of TyG index with incident chronic kidney disease (CKD). However, the impact of longitudinal patterns of TyG index on CKD risk among non-diabetic population is still unknown. Therefore, this study aimed to investigate the association of longitudinal patterns of TyG index with incident CKD among non-diabetic population.

          Methods

          A total of 5484 non-diabetic participants who underwent one health examination per year from 2015 to 2017 were included in this prospective study. TyG index variability and cumulative TyG index were calculated to assess the longitudinal patterns of TyG index. Cox proportional hazard models were performed to estimate the association of TyG index variability or cumulative TyG index with incident CKD.

          Results

          During a median of 3.82 years follow-up, 879 participants developed CKD. Compared with participants in the lowest quartile, the hazard ratio (HR) and 95% confidence interval (CI) of incident CKD were 1.772 (95% CI: 1.453, 2.162) for the highest TyG index variability quartile and 2.091 (95% CI: 1.646, 2.655) for the highest cumulative TyG index quartile in the fully adjusted models. The best discrimination and reclassification improvement were observed after adding baseline TyG, TyG index variability and cumulative TyG index to the clinical risk model for CKD.

          Conclusions

          Both TyG index variability and cumulative TyG index can independently predict incident CKD among non-diabetic population. Monitoring longitudinal patterns of TyG index may assist with prediction and prevention of incident CKD.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12933-023-02098-7.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization.

          End-stage renal disease substantially increases the risks of death, cardiovascular disease, and use of specialized health care, but the effects of less severe kidney dysfunction on these outcomes are less well defined. We estimated the longitudinal glomerular filtration rate (GFR) among 1,120,295 adults within a large, integrated system of health care delivery in whom serum creatinine had been measured between 1996 and 2000 and who had not undergone dialysis or kidney transplantation. We examined the multivariable association between the estimated GFR and the risks of death, cardiovascular events, and hospitalization. The median follow-up was 2.84 years, the mean age was 52 years, and 55 percent of the group were women. After adjustment, the risk of death increased as the GFR decreased below 60 ml per minute per 1.73 m2 of body-surface area: the adjusted hazard ratio for death was 1.2 with an estimated GFR of 45 to 59 ml per minute per 1.73 m2 (95 percent confidence interval, 1.1 to 1.2), 1.8 with an estimated GFR of 30 to 44 ml per minute per 1.73 m2 (95 percent confidence interval, 1.7 to 1.9), 3.2 with an estimated GFR of 15 to 29 ml per minute per 1.73 m2 (95 percent confidence interval, 3.1 to 3.4), and 5.9 with an estimated GFR of less than 15 ml per minute per 1.73 m2 (95 percent confidence interval, 5.4 to 6.5). The adjusted hazard ratio for cardiovascular events also increased inversely with the estimated GFR: 1.4 (95 percent confidence interval, 1.4 to 1.5), 2.0 (95 percent confidence interval, 1.9 to 2.1), 2.8 (95 percent confidence interval, 2.6 to 2.9), and 3.4 (95 percent confidence interval, 3.1 to 3.8), respectively. The adjusted risk of hospitalization with a reduced estimated GFR followed a similar pattern. An independent, graded association was observed between a reduced estimated GFR and the risk of death, cardiovascular events, and hospitalization in a large, community-based population. These findings highlight the clinical and public health importance of chronic renal insufficiency. Copyright 2004 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects.

            Because the insulin test is expensive and is not available in most laboratories in the cities of undeveloped countries, we tested whether the product of fasting triglycerides and glucose levels (TyG) is a surrogate for estimating insulin resistance compared with the homeostasis model assessment of insulin resistance (HOMA-IR) index. We performed a population-based cross-sectional study. Sampling strategy was based on a randomized two-stage cluster sampling procedure. Only apparently healthy subjects, men and nonpregnant women aged 18-65 years, with newly diagnosed impaired fasting glucose (IFG), impaired glucose tolerance (IGT), or IFG + IGT were enrolled. Renal disease, malignancy, and diabetes were exclusion criteria. Sensitivity, specificity, predictive values, and the probability of disease given a positive test were calculated. The optimal TyG index for estimating insulin resistance was established using a receiver operating characteristic scatter plot analysis. A total of 748 apparently healthy subjects aged 41.4 +/- 11.2 years were enrolled. Insulin resistance was identified in 241 (32.2%) subjects (HOMA-IR index 4.4 +/- 1.6). New diagnoses of IFG, IGT, and IFG + IGT were established in 145 (19.4%), 54 (7.2%), and 75 (10.0%) individuals. respectively. The best TyG index for diagnosis of insulin resistance was Ln 4.65, which showed the highest sensitivity (84.0%) and specificity (45.0%) values. The positive and negative predictive values were 81.1% and 84.8%, and the probability of disease, given a positive test, was 60.5%. The TyG index could be useful as surrogate to identify insulin resistance in apparently healthy subjects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016

              The last quarter century witnessed significant population growth, aging, and major changes in epidemiologic trends, which may have shaped the state of chronic kidney disease (CKD) epidemiology. Here, we used the Global Burden of Disease study data and methodologies to describe the change in burden of CKD from 1990 to 2016 involving incidence, prevalence, death, and disability-adjusted-life-years (DALYs). Globally, the incidence of CKD increased by 89% to 21,328,972 (uncertainty interval 19,100,079- 23,599,380), prevalence increased by 87% to 275,929,799 (uncertainty interval 252,442,316-300,414,224), death due to CKD increased by 98% to 1,186,561 (uncertainty interval 1,150,743-1,236,564), and DALYs increased by 62% to 35,032,384 (uncertainty interval 32,622,073-37,954,350). Measures of burden varied substantially by level of development and geography. Decomposition analyses showed that the increase in CKD DALYs was driven by population growth and aging. Globally and in most Global Burden of Disease study regions, age-standardized DALY rates decreased, except in High-income North America, Central Latin America, Oceania, Southern Sub-Saharan Africa, and Central Asia, where the increased burden of CKD due to diabetes and to a lesser extent CKD due to hypertension and other causes outpaced burden expected by demographic expansion. More of the CKD burden (63%) was in low and lower-middle-income countries. There was an inverse relationship between age-standardized CKD DALY rate and health care access and quality of care. Frontier analyses showed significant opportunities for improvement at all levels of the development spectrum. Thus, the global toll of CKD is significant, rising, and unevenly distributed; it is primarily driven by demographic expansion and in some regions a significant tide of diabetes. Opportunities exist to reduce CKD burden at all levels of development.
                Bookmark

                Author and article information

                Contributors
                yanyxepi@ccmu.edu.cn
                Journal
                Cardiovasc Diabetol
                Cardiovasc Diabetol
                Cardiovascular Diabetology
                BioMed Central (London )
                1475-2840
                3 January 2024
                3 January 2024
                2024
                : 23
                : 7
                Affiliations
                [1 ]Department of Epidemiology and Biostatistics, Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, ( https://ror.org/013xs5b60) Beijing, China
                [2 ]Health Management Center, Xuanwu Hospital, Capital Medical University, ( https://ror.org/013xs5b60) Beijing, China
                [3 ]School of Public Health, Capital Medical University, ( https://ror.org/013xs5b60) No.10 Xitoutiao, You’anmenWai, Fengtai District, Beijing, 100069 China
                Article
                2098
                10.1186/s12933-023-02098-7
                10765660
                38172903
                a629a959-6f6d-43e7-ac6d-5751042b5c63
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 17 November 2023
                : 17 December 2023
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2024

                Endocrinology & Diabetes
                triglyceride-glucose index,chronic kidney disease,variability,cumulative exposure,cohort study

                Comments

                Comment on this article