25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Spectral clustering on protein-protein interaction networks via constructing affinity matrix using attributed graph embedding

      , , ,
      Computers in Biology and Medicine
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Reducing the dimensionality of data with neural networks.

          High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such "autoencoder" networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An automated method for finding molecular complexes in large protein interaction networks

            Background Recent advances in proteomics technologies such as two-hybrid, phage display and mass spectrometry have enabled us to create a detailed map of biomolecular interaction networks. Initial mapping efforts have already produced a wealth of data. As the size of the interaction set increases, databases and computational methods will be required to store, visualize and analyze the information in order to effectively aid in knowledge discovery. Results This paper describes a novel graph theoretic clustering algorithm, "Molecular Complex Detection" (MCODE), that detects densely connected regions in large protein-protein interaction networks that may represent molecular complexes. The method is based on vertex weighting by local neighborhood density and outward traversal from a locally dense seed protein to isolate the dense regions according to given parameters. The algorithm has the advantage over other graph clustering methods of having a directed mode that allows fine-tuning of clusters of interest without considering the rest of the network and allows examination of cluster interconnectivity, which is relevant for protein networks. Protein interaction and complex information from the yeast Saccharomyces cerevisiae was used for evaluation. Conclusion Dense regions of protein interaction networks can be found, based solely on connectivity data, many of which correspond to known protein complexes. The algorithm is not affected by a known high rate of false positives in data from high-throughput interaction techniques. The program is available from .
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              BioGRID: a general repository for interaction datasets

              Access to unified datasets of protein and genetic interactions is critical for interrogation of gene/protein function and analysis of global network properties. BioGRID is a freely accessible database of physical and genetic interactions available at . BioGRID release version 2.0 includes >116 000 interactions from Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens. Over 30 000 interactions have recently been added from 5778 sources through exhaustive curation of the Saccharomyces cerevisiae primary literature. An internally hyper-linked web interface allows for rapid search and retrieval of interaction data. Full or user-defined datasets are freely downloadable as tab-delimited text files and PSI-MI XML. Pre-computed graphical layouts of interactions are available in a variety of file formats. User-customized graphs with embedded protein, gene and interaction attributes can be constructed with a visualization system called Osprey that is dynamically linked to the BioGRID.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Computers in Biology and Medicine
                Computers in Biology and Medicine
                Elsevier BV
                00104825
                November 2021
                November 2021
                : 138
                : 104933
                Article
                10.1016/j.compbiomed.2021.104933
                34655897
                a615819d-d9f5-49b7-96a2-e60306a7137b
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article