Recent laboratory studies show that mixing activated carbon with contaminated sediment reduces the chemical and biological availability of hydrophobic organic contaminants. In this study, we test the effects of varying the activated carbon dose and particle size in reducing the aqueous availability of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) and the uptake of PCBs by two benthic organisms. We mixed PCB- and PAH-contaminated sediment from Hunters Point Naval Shipyard, San Francisco Bay (CA, USA), for one month with activated carbon, at doses of 0.34, 1.7, and 3.4% dry mass basis. We found that increasing the carbon dose increased the effectiveness in reducing PCB bioaccumulation. In 56-d uptake tests with the benthic organisms Neanthes arenaceodentata and Leptocheirus plumulosus, PCB bioaccumulation was reduced by 93 and 90%, respectively, with 3.4% carbon. Increasing the dose also increased the effectiveness in reducing PCB and PAH aqueous concentrations and uptake by semipermeable membrane devices and quiescent flux of PCBs to overlying water. Decreasing activated carbon particle size increased treatment effectiveness in reducing PCB aqueous concentration, and larger-sized activated carbon (400-1,700 microm) was ineffective with a contact period of one month. We invoke a numerical model based on intraparticle diffusion in sediment and activated carbon particles to help interpret our experimental results. This model was useful in explaining the trends for the effect of activated carbon dose and particle size on PCB aqueous concentrations in well-mixed systems.