7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Changes in Serum Bone Metabolism Markers after Living Donor Liver Transplantation (LDLT) and Their Association with Fracture Occurrences

      , , ,
      Life
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Living donor liver transplantation (LDLT) is lifesaving, but can lead to osteoporosis and fractures. In our 3-year study of 25 LDLT recipients, we observed significant reductions in lumbar spine and femoral neck T scores, along with bone resorption marker reductions and liver regeneration marker increases. Serum calcium levels increased, while osteoprotegerin (OPG) decreased and Dickkopf-related protein 1 (DKK-1) increased. Patients who suffered fractures within 3 years of LDLT had higher serum OPG, lower serum nuclear factor kappa B ligand (RANKL), a higher OPG/RANKL ratio and higher serum DKK-1 levels. OPG, RANKL, OPG/RANKL ratio and DKK-1 levels before LDLT predicted hip or spine fractures within three years after LDLT. Further research is necessary to determine the optimal level of osteoclastic activity for preventing fracture onset.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Osteoporosis: now and the future.

          Osteoporosis is a common disease characterised by a systemic impairment of bone mass and microarchitecture that results in fragility fractures. With an ageing population, the medical and socioeconomic effect of osteoporosis, particularly postmenopausal osteoporosis, will increase further. A detailed knowledge of bone biology with molecular insights into the communication between bone-forming osteoblasts and bone-resorbing osteoclasts and the orchestrating signalling network has led to the identification of novel therapeutic targets. Novel treatment strategies have been developed that aim to inhibit excessive bone resorption and increase bone formation. The most promising novel treatments include: denosumab, a monoclonal antibody for receptor activator of NF-κB ligand, a key osteoclast cytokine; odanacatib, a specific inhibitor of the osteoclast protease cathepsin K; and antibodies against the proteins sclerostin and dickkopf-1, two endogenous inhibitors of bone formation. This overview discusses these novel therapies and explains their underlying physiology. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Modulation of Dickkopf-1 attenuates glucocorticoid induction of osteoblast apoptosis, adipocytic differentiation, and bone mass loss.

            Long-term glucocorticoid treatment impairs the survival and bone formation of osteogenic cells, leading to bone mass loss. The Wnt inhibitor Dickkopf-1 (DKK1) acts as a potent bone-remodeling factor that mediates several types of skeletal disorders. Whereas excess glucocorticoid is known to disturb Wnt signaling in osteogenic cells, modulation of the skeletally deleterious effects of DKK1 to alleviate glucocorticoid induction of bone loss has not been tested. In this study, knockdown of DKK1 expression by end-capped phosphorothioate DKK1 antisense oligonucleotide (DKK1-AS) abrogated dexamethasone suppression of alkaline phosphatase activity and osteocalcin expression in MC3T3-E1 preosteoblasts. Exogenous DKK1-AS treatment alleviated dexamethasone suppression of mineral density, trabecular bone volume, osteoblast surface, and bone formation rate in bone tissue and ex vivo osteogenesis of primary bone-marrow mesenchymal cells. The DKK1-AS inhibited adipocyte volume in the marrow cavity of steroid-treated bone tissue. Immunohistochemical observation revealed that DKK1-AS abrogated dexamethasone-induced DKK1 expression and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling of osteoblasts adjacent to trabecular bone. Knocking down DKK1 abrogated dexamethasone-modulated expression of nuclear beta-catenin and phosphorylated Ser(473)-Akt and survival of osteoblasts and adipocytic differentiation of mesenchymal progenitor cell cultures. Taken together, knocking down DKK1 alleviated the deleterious effect of glucocorticoid on bone microstructure. The DKK1-AS treatment appeared to protect bone tissue by modulating beta-catenin and Akt-mediated survival as well as the osteogenic and adipogenic activities of glucocorticoid-stressed osteoprogenitor cells. Interference with the osteogenesis-inhibitory action of DKK1 has therapeutic potential for preventing glucocorticoid induction of osteopenia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              An Overview of the Molecular Mechanisms Contributing to Musculoskeletal Disorders in Chronic Liver Disease: Osteoporosis, Sarcopenia, and Osteoporotic Sarcopenia

              The prevalence of osteoporosis and sarcopenia is significantly higher in patients with liver disease than in those without liver disease and osteoporosis and sarcopenia negatively influence morbidity and mortality in liver disease, yet these musculoskeletal disorders are frequently overlooked in clinical practice for patients with chronic liver disease. The objective of this review is to provide a comprehensive understanding of the molecular mechanisms of musculoskeletal disorders accompanying the pathogenesis of liver disease. The increased bone resorption through the receptor activator of nuclear factor kappa (RANK)-RANK ligand (RANKL)-osteoprotegerin (OPG) system and upregulation of inflammatory cytokines and decreased bone formation through increased bilirubin and sclerostin and lower insulin-like growth factor-1 are important mechanisms for osteoporosis in patients with liver disease. Sarcopenia is associated with insulin resistance and obesity in non-alcoholic fatty liver disease, whereas hyperammonemia, low amount of branched chain amino acids, and hypogonadism contributes to sarcopenia in liver cirrhosis. The bidirectional crosstalk between muscle and bone through myostatin, irisin, β-aminoisobutyric acid (BAIBA), osteocalcin, as well as the activation of the RANK and the Wnt/β-catenin pathways are associated with osteosarcopenia. The increased understandings for these musculoskeletal disorders would be contributes to the development of effective therapies targeting the pathophysiological mechanism involved.
                Bookmark

                Author and article information

                Contributors
                Journal
                LBSIB7
                Life
                Life
                MDPI AG
                2075-1729
                July 2023
                June 25 2023
                : 13
                : 7
                : 1438
                Article
                10.3390/life13071438
                37511813
                a5d816d6-e747-4536-a3fe-0a69038413dc
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article