14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Green Nano-Biotechnology: A New Sustainable Paradigm to Control Dengue Infection

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dengue is a growing mosquito-borne viral disease prevalent in 128 countries, while 3.9 billion people are at high risk of acquiring the infection. With no specific treatment available, the only way to mitigate the risk of dengue infection is through controlling of vector, i.e., Aedes aegypti. Nanotechnology-based prevention strategies like biopesticides with nanoformulation are now getting popular for preventing dengue fever. Metal nanoparticles (NPs) synthesized by an eco-friendly process, through extracts of medicinal plants have indicated potential anti-dengue applications. Green synthesis of metal NPs is simple, cost-effective, and devoid of hazardous wastes. The recent progress in the phyto-synthesized multifunctional metal NPs for anti-dengue applications has encouraged us to review the available literature and mechanistic aspects of the dengue control using green-synthesized NPs. Furthermore, the molecular bases of the viral inhibition through NPs and the nontarget impacts or hazards with reference to the environmental integrity are discussed in depth. Till date, major focus has been on green synthesis of silver and gold NPs, which need further extension to other innovative composite nanomaterials. Further detailed mechanistic studies are required to critically evaluate the mechanistic insights during the synthesis of the biogenic NPs. Likewise, detailed analysis of the toxicological aspects of NPs and their long-term impact in the environment should be critically assessed.

          Related collections

          Most cited references170

          • Record: found
          • Abstract: found
          • Article: not found

          A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium.

          Wolbachia are maternally inherited intracellular bacterial symbionts that are estimated to infect more than 60% of all insect species. While Wolbachia is commonly found in many mosquitoes it is absent from the species that are considered to be of major importance for the transmission of human pathogens. The successful introduction of a life-shortening strain of Wolbachia into the dengue vector Aedes aegypti that halves adult lifespan has recently been reported. Here we show that this same Wolbachia infection also directly inhibits the ability of a range of pathogens to infect this mosquito species. The effect is Wolbachia strain specific and relates to Wolbachia priming of the mosquito innate immune system and potentially competition for limiting cellular resources required for pathogen replication. We suggest that this Wolbachia-mediated pathogen interference may work synergistically with the life-shortening strategy proposed previously to provide a powerful approach for the control of insect transmitted diseases. Copyright 2009 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Is Dengue Vector Control Deficient in Effectiveness or Evidence?: Systematic Review and Meta-analysis

            Background Although a vaccine could be available as early as 2016, vector control remains the primary approach used to prevent dengue, the most common and widespread arbovirus of humans worldwide. We reviewed the evidence for effectiveness of vector control methods in reducing its transmission. Methodology/Principal Findings Studies of any design published since 1980 were included if they evaluated method(s) targeting Aedes aegypti or Ae. albopictus for at least 3 months. Primary outcome was dengue incidence. Following Cochrane and PRISMA Group guidelines, database searches yielded 960 reports, and 41 were eligible for inclusion, with 19 providing data for meta-analysis. Study duration ranged from 5 months to 10 years. Studies evaluating multiple tools/approaches (23 records) were more common than single methods, while environmental management was the most common method (19 studies). Only 9/41 reports were randomized controlled trials (RCTs). Two out of 19 studies evaluating dengue incidence were RCTs, and neither reported any statistically significant impact. No RCTs evaluated effectiveness of insecticide space-spraying (fogging) against dengue. Based on meta-analyses, house screening significantly reduced dengue risk, OR 0.22 (95% CI 0.05–0.93, p = 0.04), as did combining community-based environmental management and water container covers, OR 0.22 (95% CI 0.15–0.32, p 0.5), but insecticide aerosols (OR 2.03; 95% CI 1.44–2.86) and mosquito coils (OR 1.44; 95% CI 1.09–1.91) were associated with higher dengue risk (p = 0.01). Although 23/41 studies examined the impact of insecticide-based tools, only 9 evaluated the insecticide susceptibility status of the target vector population during the study. Conclusions/Significance This review and meta-analysis demonstrate the remarkable paucity of reliable evidence for the effectiveness of any dengue vector control method. Standardised studies of higher quality to evaluate and compare methods must be prioritised to optimise cost-effective dengue prevention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dengue infection

              Dengue is widespread throughout the tropics and local spatial variation in dengue virus transmission is strongly influenced by rainfall, temperature, urbanization and distribution of the principal mosquito vector Aedes aegypti. Currently, endemic dengue virus transmission is reported in the Eastern Mediterranean, American, South-East Asian, Western Pacific and African regions, whereas sporadic local transmission has been reported in Europe and the United States as the result of virus introduction to areas where Ae. aegypti and Aedes albopictus, a secondary vector, occur. The global burden of the disease is not well known, but its epidemiological patterns are alarming for both human health and the global economy. Dengue has been identified as a disease of the future owing to trends toward increased urbanization, scarce water supplies and, possibly, environmental change. According to the WHO, dengue control is technically feasible with coordinated international technical and financial support for national programmes. This Primer provides a general overview on dengue, covering epidemiology, control, disease mechanisms, diagnosis, treatment and research priorities.
                Bookmark

                Author and article information

                Contributors
                Journal
                Bioinorg Chem Appl
                Bioinorg Chem Appl
                bca
                Bioinorganic Chemistry and Applications
                Hindawi
                1565-3633
                1687-479X
                2022
                8 August 2022
                : 2022
                : 3994340
                Affiliations
                1Public Health Laboratories Division, National Institute of Health, Islamabad, Pakistan
                2Department of Pathology, Lady Reading Hospital Medical Teaching Institution, Peshawar, KP, Pakistan
                3Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
                4Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, KP 18000, Pakistan
                5Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
                Author notes

                Academic Editor: S. Kumaran

                Author information
                https://orcid.org/0000-0002-0489-8538
                https://orcid.org/0000-0002-9848-8723
                https://orcid.org/0000-0002-4299-2445
                https://orcid.org/0000-0002-2361-086X
                Article
                10.1155/2022/3994340
                9377959
                a5bf6e5d-ada0-4dbd-b7c2-dccd5e2db68c
                Copyright © 2022 Tanzeel Zohra et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 April 2022
                : 9 July 2022
                Categories
                Review Article

                Biochemistry
                Biochemistry

                Comments

                Comment on this article