9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Coexistence of many species in random ecosystems

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Food-web structure and network theory: The role of connectance and size.

          Networks from a wide range of physical, biological, and social systems have been recently described as "small-world" and "scale-free." However, studies disagree whether ecological networks called food webs possess the characteristic path lengths, clustering coefficients, and degree distributions required for membership in these classes of networks. Our analysis suggests that the disagreements are based on selective use of relatively few food webs, as well as analytical decisions that obscure important variability in the data. We analyze a broad range of 16 high-quality food webs, with 25-172 nodes, from a variety of aquatic and terrestrial ecosystems. Food webs generally have much higher complexity, measured as connectance (the fraction of all possible links that are realized in a network), and much smaller size than other networks studied, which have important implications for network topology. Our results resolve prior conflicts by demonstrating that although some food webs have small-world and scale-free structure, most do not if they exceed a relatively low level of connectance. Although food-web degree distributions do not display a universal functional form, observed distributions are systematically related to network connectance and size. Also, although food webs often lack small-world structure because of low clustering, we identify a continuum of real-world networks including food webs whose ratios of observed to random clustering coefficients increase as a power-law function of network size over 7 orders of magnitude. Although food webs are generally not small-world, scale-free networks, food-web topology is consistent with patterns found within those classes of networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Compartmentalization increases food-web persistence.

            It has recently been noted that empirical food webs are significantly compartmentalized; that is, subsets of species exist that interact more frequently among themselves than with other species in the community. Although the dynamic implications of compartmentalization have been debated for at least four decades, a general answer has remained elusive. Here, we unambiguously demonstrate that compartmentalization acts to increase the persistence of multitrophic food webs. We then identify the mechanisms behind this result. Compartments in food webs act directly to buffer the propagation of extinctions throughout the community and augment the long-term persistence of its constituent species. This contribution to persistence is greater the more complex the food web, which helps to reconcile the simultaneous complexity and stability of natural communities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Beyond pairwise mechanisms of species coexistence in complex communities

              The tremendous diversity of species in ecological communities has motivated a century of research into the mechanisms that maintain biodiversity. However, much of this work examines the coexistence of just pairs of competitors. This approach ignores those mechanisms of coexistence that emerge only in diverse
                Bookmark

                Author and article information

                Journal
                Nature Ecology & Evolution
                Nat Ecol Evol
                Springer Nature
                2397-334X
                August 2018
                July 9 2018
                August 2018
                : 2
                : 8
                : 1237-1242
                Article
                10.1038/s41559-018-0603-6
                29988167
                a5ba35a2-6fef-491a-9310-6d8e6793f32e
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article