2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Growth, Properties and Applications of Bi 0.5Na 0.5TiO 3 Ferroelectric Nanomaterials

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The emerging demands for miniaturization of electronics has driven the research into various nanomaterials. Lead-free Bi 0.5Na 0.5TiO 3 (BNT) ferroelectric nanomaterials have drawn great interest owing to their superiorities of large remanent polarization, high pyroelectric and piezoelectric coefficients, unique photovoltaic performance and excellent dielectric properties. As attractive multifunctional ferroelectrics, BNT nanomaterials are widely utilized in various fields, such as energy harvest, energy storage, catalysis as well as sensing. The growing desire for precisely controlling the properties of BNT nanomaterials has led to significant advancements in material design and preparation approaches. BNT ferroelectric nanomaterials exhibit significant potential in fabrication of electronic devices and degradation of waste water, which pushes forward the advancement of the Internet of things and sustainable human development. This article presents an overview of research progresses of BNT ferroelectric nanomaterials, including growth, properties and applications. In addition, future prospects are discussed.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          Multiferroic BaTiO3-CoFe2O4 Nanostructures.

          We report on the coupling between ferroelectric and magnetic order parameters in a nanostructured BaTiO3-CoFe2O4 ferroelectromagnet. This facilitates the interconversion of energies stored in electric and magnetic fields and plays an important role in many devices, including transducers, field sensors, etc. Such nanostructures were deposited on single-crystal SrTiO3 (001) substrates by pulsed laser deposition from a single Ba-Ti-Co-Fe-oxide target. The films are epitaxial in-plane as well as out-of-plane with self-assembled hexagonal arrays of CoFe2O4 nanopillars embedded in a BaTiO3 matrix. The CoFe2O4 nanopillars have uniform size and average spacing of 20 to 30 nanometers. Temperature-dependent magnetic measurements illustrate the coupling between the two order parameters, which is manifested as a change in magnetization at the ferroelectric Curie temperature. Thermodynamic analyses show that the magnetoelectric coupling in such a nanostructure can be understood on the basis of the strong elastic interactions between the two phases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Switchable ferroelectric diode and photovoltaic effect in BiFeO3.

            Unidirectional electric current flow, such as that found in a diode, is essential for modern electronics. It usually occurs at asymmetric interfaces such as p-n junctions or metal/semiconductor interfaces with Schottky barriers. We report on a diode effect associated with the direction of bulk electric polarization in BiFeO3: a ferroelectric with a small optical gap edge of approximately 2.2 electron volts. We found that bulk electric conduction in ferroelectric monodomain BiFeO3 crystals is highly nonlinear and unidirectional. This diode effect switches its direction when the electric polarization is flipped by an external voltage. A substantial visible-light photovoltaic effect is observed in BiFeO3 diode structures. These results should improve understanding of charge conduction mechanisms in leaky ferroelectrics and advance the design of switchable devices combining ferroelectric, electronic, and optical functionalities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ferroelectric polymers.

              A Lovinger (1983)
              Piezoelectricity and pyroelectricity, traditionally encountered in certain single crystals and ceramics, have now also been documented in a number of polymers. Recently, one such polymer-poly(vinylidene fluoride)-and some of its copolymers have been shown to be ferroelectric as well. The extraordinary molecular and supermolecular structural requirements for ferroelectric behavior in polymers are discussed in detail, with particular emphasis on poly(vinylidene fluoride). Piezoelectric, pyroelectric, and ferroelectric properties are also briefly reviewed, as are some promising applications of such polymers.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Nanomaterials (Basel)
                Nanomaterials (Basel)
                nanomaterials
                Nanomaterials
                MDPI
                2079-4991
                30 June 2021
                July 2021
                : 11
                : 7
                : 1724
                Affiliations
                [1 ]Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China; liuyuan1@ 123456binn.cas.cn
                [2 ]CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; jiyun@ 123456binn.cas.cn
                [3 ]School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
                Author notes
                [* ]Correspondence: yayang@ 123456binn.cas.cn
                [†]

                These authors contributed equally to this work.

                Article
                nanomaterials-11-01724
                10.3390/nano11071724
                8307907
                34209157
                a5a5da3f-89e3-4e5d-a5ab-206b8d30b99e
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 24 May 2021
                : 24 June 2021
                Categories
                Review

                bnt nanomaterials,ferroelectricity,piezoelectricity,pyroelectricity,dielectric property

                Comments

                Comment on this article