19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of altitude on wing metric variation of Aedes aegypti (Diptera: Culicidae) in a region of the Colombian Central Andes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In mosquitoes of medical importance, wing shape and size can vary with altitude, an aspect that can influence dispersion and, consequently, their vector capacity. Using geometric morphometry analysis, Aedes aegypti wing size and shape variation of males and females was studied in four altitudes in the second-smallest department in Colombia: 1,200 m (Tebaida), 1,400 m (Armenia), 1,500 m (Calarcá), and 1,700 m (Filandia). Wing shape in males (P < 0.001) and females (P < 0.001) was significantly different through the altitudinal gradient; in turn, wing size in males followed the altitudinal gradient males (R 2 = 0.04946, P = 0.0002), females (R 2 = 0.0011, P = 0.46). Wing allometry for males (P < 0.001) and females (P < 0.001) was significant. Likewise, the shape and size of the wings of males (P < 0.001) and females (P < 0.001) had significant fluctuating asymmetry. It is concluded that, in a small scale with an altitudinal variation of 500 meters, it is detected that the size and shape of the wings varied in A. aegypti, main vector the agents that cause dengue, chikungunya, and Zika. The fluctuating asymmetry is present in the individuals studied and could be associated with environmental effects caused by vector control campaigns present in some sampling locations.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti.

          Most studies on the ability of insect populations to transmit pathogens consider only constant temperatures and do not account for realistic daily temperature fluctuations that can impact vector-pathogen interactions. Here, we show that diurnal temperature range (DTR) affects two important parameters underlying dengue virus (DENV) transmission by Aedes aegypti. In two independent experiments using different DENV serotypes, mosquitoes were less susceptible to virus infection and died faster under larger DTR around the same mean temperature. Large DTR (20 °C) decreased the probability of midgut infection, but not duration of the virus extrinsic incubation period (EIP), compared with moderate DTR (10 °C) or constant temperature. A thermodynamic model predicted that at mean temperatures 18 °C, larger DTR reduces DENV transmission. The negative impact of DTR on Ae. aegypti survival indicates that large temperature fluctuations will reduce the probability of vector survival through EIP and expectation of infectious life. Seasonal variation in the amplitude of daily temperature fluctuations helps to explain seasonal forcing of DENV transmission at locations where average temperature does not vary seasonally and mosquito abundance is not associated with dengue incidence. Mosquitoes lived longer and were more likely to become infected under moderate temperature fluctuations, which is typical of the high DENV transmission season than under large temperature fluctuations, which is typical of the low DENV transmission season. Our findings reveal the importance of considering short-term temperature variations when studying DENV transmission dynamics.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia.

              Immature development times, survival rates and adult size (wing-lengths) of the mosquito Aedes aegypti (L.) (Diptera: Culicidae) were studied in the laboratory at temperatures of 10-40 degrees C. The duration of development from egg eclosion (hatching of the first instar) to adult was inversely related to temperature, ranging from 7.2 +/- 0.2 days at 35 degrees C to 39.7 +/- 2.3 days at 15 degrees C. The minimum temperature threshold for development (t) was determined as 8.3 +/- 3.6 degrees C and the thermal constant (K) was 181.2 +/- 36.1 day-degrees above the threshold. Maximum survival rates of 88-93% were obtained between 20 and 30 degrees C. Wing-length was inversely related to temperature. The sex ratio (female:male) was 1:1 at all temperatures tested (15, 20, 25 and 35 degrees C) except 30 degrees C (4:3). Under field conditions at Townsville and Charters Towers, north Queensland, the duration of immature development varied according to the container position (i.e. shaded or exposed) and the availability of food resources, as well as inversely with temperature. These data indicate that containers with an abundance of organic matter (e.g. those used for striking plant cuttings) or those amongst foliage or under trees (e.g. discarded plastic tubs and tyres) tended to produce the largest adult Ae. aegypti, which had faster development and better immature survival. As such progeny have been linked to a greater risk of dengue transmission, it would seem important to focus on control of such containers.
                Bookmark

                Author and article information

                Contributors
                Role: Data curationRole: Formal analysisRole: MethodologyRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: InvestigationRole: MethodologyRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Data curationRole: Formal analysisRole: MethodologyRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SoftwareRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                20 August 2020
                2020
                : 15
                : 8
                : e0228975
                Affiliations
                [1 ] Grupo de Evolución, Ecología y Conservación (EECO), Universidad del Quindío, Armenia, Quindío, Colombia
                [2 ] Escuela de Investigación en Biomatemáticas, Universidad del Quindío, Armenia, Quindío, Colombia
                [3 ] Centro de Investigaciones en Enfermedades Tropicales – CINTROP, Facultad de Salud, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Piedecuesta, Santander, Colombia
                Swedish University of Agricultural Sciences, SWEDEN
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0003-2245-0558
                http://orcid.org/0000-0002-3553-1632
                Article
                PONE-D-20-02243
                10.1371/journal.pone.0228975
                7440630
                32817690
                a587cc1d-9e83-4c0c-aa5f-357d6305d3a7
                © 2020 Leyton Ramos et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 24 January 2020
                : 2 August 2020
                Page count
                Figures: 6, Tables: 5, Pages: 15
                Funding
                Funded by: Universidad del Quindio
                Award ID: 828
                Award Recipient :
                The authors thank office of the vice-president for research, Universidad del Quindío for funding the Project (Grant 828).
                Categories
                Research Article
                Biology and Life Sciences
                Anatomy
                Animal Anatomy
                Animal Wings
                Medicine and Health Sciences
                Anatomy
                Animal Anatomy
                Animal Wings
                Biology and Life Sciences
                Zoology
                Animal Anatomy
                Animal Wings
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Disease Vectors
                Insect Vectors
                Mosquitoes
                Biology and Life Sciences
                Species Interactions
                Disease Vectors
                Insect Vectors
                Mosquitoes
                Biology and Life Sciences
                Zoology
                Entomology
                Insects
                Mosquitoes
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Invertebrates
                Arthropoda
                Insects
                Mosquitoes
                Biology and Life Sciences
                Zoology
                Animals
                Invertebrates
                Arthropoda
                Insects
                Mosquitoes
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Disease Vectors
                Insect Vectors
                Mosquitoes
                Aedes Aegypti
                Biology and Life Sciences
                Species Interactions
                Disease Vectors
                Insect Vectors
                Mosquitoes
                Aedes Aegypti
                Biology and Life Sciences
                Zoology
                Entomology
                Insects
                Mosquitoes
                Aedes Aegypti
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Invertebrates
                Arthropoda
                Insects
                Mosquitoes
                Aedes Aegypti
                Biology and Life Sciences
                Zoology
                Animals
                Invertebrates
                Arthropoda
                Insects
                Mosquitoes
                Aedes Aegypti
                Research and Analysis Methods
                Imaging Techniques
                Morphometry
                People and places
                Geographical locations
                South America
                Colombia
                Computer and Information Sciences
                Software Engineering
                Computer Software
                Engineering and Technology
                Software Engineering
                Computer Software
                Biology and Life Sciences
                Developmental Biology
                Life Cycles
                Larvae
                Biology and Life Sciences
                Organisms
                Viruses
                Arboviruses
                Custom metadata
                All relevant data are within the manuscript and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article