57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Shrinkage observed-to-expected ratios for robust and transparent large-scale pattern discovery

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Large observational data sets are a great asset to better understand the effects of medicines in clinical practice and, ultimately, improve patient care. For an empirical pattern in observational data to be of practical relevance, it should represent a substantial deviation from the null model. For the purpose of identifying such deviations, statistical significance tests are inadequate, as they do not on their own distinguish the magnitude of an effect from its data support. The observed-to-expected (OE) ratio on the other hand directly measures strength of association and is an intuitive basis to identify a range of patterns related to event rates, including pairwise associations, higher order interactions and temporal associations between events over time. It is sensitive to random fluctuations for rare events with low expected counts but statistical shrinkage can protect against spurious associations. Shrinkage OE ratios provide a simple but powerful framework for large-scale pattern discovery. In this article, we outline a range of patterns that are naturally viewed in terms of OE ratios and propose a straightforward and effective statistical shrinkage transformation that can be applied to any such ratio. The proposed approach retains emphasis on the practical relevance and transparency of highlighted patterns, while protecting against spurious associations.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: not found
          • Article: not found

          VigiBase, the WHO Global ICSR Database System: Basic Facts

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Large-Scale Bayesian Logistic Regression for Text Categorization

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A Bayesian neural network method for adverse drug reaction signal generation.

              The database of adverse drug reactions (ADRs) held by the Uppsala Monitoring Centre on behalf of the 47 countries of the World Health Organization (WHO) Collaborating Programme for International Drug Monitoring contains nearly two million reports. It is the largest database of this sort in the world, and about 35,000 new reports are added quarterly. The task of trying to find new drug-ADR signals has been carried out by an expert panel, but with such a large volume of material the task is daunting. We have developed a flexible, automated procedure to find new signals with known probability difference from the background data. Data mining, using various computational approaches, has been applied in a variety of disciplines. A Bayesian confidence propagation neural network (BCPNN) has been developed which can manage large data sets, is robust in handling incomplete data, and may be used with complex variables. Using information theory, such a tool is ideal for finding drug-ADR combinations with other variables, which are highly associated compared to the generality of the stored data, or a section of the stored data. The method is transparent for easy checking and flexible for different kinds of search. Using the BCPNN, some time scan examples are given which show the power of the technique to find signals early (captopril-coughing) and to avoid false positives where a common drug and ADRs occur in the database (digoxin-acne; digoxin-rash). A routine application of the BCPNN to a quarterly update is also tested, showing that 1004 suspected drug-ADR combinations reached the 97.5% confidence level of difference from the generality. Of these, 307 were potentially serious ADRs, and of these 53 related to new drugs. Twelve of the latter were not recorded in the CD editions of The physician's Desk Reference or Martindale's Extra Pharmacopoea and did not appear in Reactions Weekly online. The results indicate that the BCPNN can be used in the detection of significant signals from the data set of the WHO Programme on International Drug Monitoring. The BCPNN will be an extremely useful adjunct to the expert assessment of very large numbers of spontaneously reported ADRs.
                Bookmark

                Author and article information

                Journal
                Stat Methods Med Res
                Stat Methods Med Res
                SMM
                spsmm
                Statistical Methods in Medical Research
                SAGE Publications (Sage UK: London, England )
                0962-2802
                1477-0334
                24 June 2011
                February 2013
                : 22
                : 1 , Special Issue: Effectiveness Research
                : 57-69
                Affiliations
                [1 ]Uppsala Monitoring Centre, WHO Collaborating Centre for International Drug Monitoring, Uppsala, Sweden
                [2 ]Department of Mathematics, Stockholm University, Stockholm, Sweden
                [3 ]School of Information Systems, Computing and Mathematics, Brunel University, London, UK
                Author notes
                [*]G. Niklas Norén, Uppsala Monitoring Centre, WHO Collaborating Centre for International Drug Monitoring, Uppsala, Sweden Email: niklas.noren@ 123456who-umc.org
                Article
                10.1177_0962280211403604
                10.1177/0962280211403604
                6331976
                21705438
                a58714ef-a1aa-499e-96c7-01a9b0f00ba7
                © The Author(s) 2011

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                Categories
                Articles

                pattern discovery,statistical shrinkage,exploratory analysis,adverse drug reactions

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content11

                Cited by130

                Most referenced authors271