12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The c-Kit/D816V mutation eliminates the differences in signal transduction and biological responses between two isoforms of c-Kit

      , ,
      Cellular Signalling
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Activating mutations of codon 816 of the Kit gene have been implicated in malignant cell growth of acute myeloid leukemia (AML), systemic mastocytosis and germ cell tumors. Substitution of aspartic acid with valine (D816V) renders the receptor independent of ligand for activation and signaling. Wild-type c-Kit is a tyrosine kinase receptor that requires its ligand, stem cell factor (SCF), for activation. Several isoforms of c-Kit exist as a result of alternative mRNA splicing, of which two are characterized by the presence or absence of four amino acids (GNNK- and GNNK+, respectively) in the extracellular domain. The two isoforms show differences in signal transduction and biological activities and the shorter isoform seems to be highly expressed than the longer isoform in human malignancies. In this study we analysed the signal transduction downstream of the oncogenic c-Kit mutant D816V in an isoform specific context, using the hematopoietic cell line Ba/F3 stably transfected with the different versions of isoform and mutant receptor. Our data show that in contrast to the differences shown in the activation of wild-type c-Kit isoforms, both isoforms of c-Kit/D816V are constitutively phosphorylated to the same extent. By the use of Western blot analysis we investigated the activation of different signaling proteins and found that both D816V/GNNK- and D816V/GNNK+ constitutively phosphorylated Gab2, Shc, SHP-2 and Cbl to almost the same extent as c-Kit/GNNK-. In addition, both isoforms of c-Kit/D816V induced SCF-independent cell survival and proliferation equally well. This is in contrast to wild-type c-Kit, where c-Kit/GNNK- induced better cell survival and stronger proliferation than c-Kit/GNNK+, and both required stimulation with SCF. Taken together, these findings reveal that the differences in downstream signal transduction and biological responses between the two GNNK isoforms are eliminated by the D816V mutant.

          Related collections

          Author and article information

          Journal
          Cellular Signalling
          Cellular Signalling
          Elsevier BV
          08986568
          March 2009
          March 2009
          : 21
          : 3
          : 413-418
          Article
          10.1016/j.cellsig.2008.11.008
          19049823
          a585d16c-e008-4e2a-ac76-29663eac1614
          © 2009

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article