11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Photoreceptors are the most numerous and metabolically demanding cells in the retina. Their primary nutrient source is the choriocapillaris, and both the choriocapillaris and photoreceptors require trophic and functional support from retinal pigment epithelium (RPE) cells. Defects in RPE, photoreceptors, and the choriocapillaris are characteristic of age-related macular degeneration (AMD), a common vision-threatening disease. RPE dysfunction or death is a primary event in AMD, but the combination(s) of cellular stresses that affect the function and survival of RPE are incompletely understood. Here, using mouse models in which hypoxia can be genetically triggered in RPE, we show that hypoxia-induced metabolic stress alone leads to photoreceptor atrophy. Glucose and lipid metabolism are radically altered in hypoxic RPE cells; these changes impact nutrient availability for the sensory retina and promote progressive photoreceptor degeneration. Understanding the molecular pathways that control these responses may provide important clues about AMD pathogenesis and inform future therapies.

          DOI: http://dx.doi.org/10.7554/eLife.14319.001

          eLife digest

          Cells use a sugar called glucose as fuel to provide energy for many essential processes. The light-sensing cells in the eye, known as photoreceptors, need tremendous amounts of glucose, which they receive from the blood with the help of neighboring cells called retinal pigment epithelium (RPE) cells. Without a reliable supply of this sugar, the photoreceptors die and vision is lost.

          As we age, we are at greater risk of vision loss because RPE cells become less efficient at transporting glucose and our blood vessels shrink so that the photoreceptors may become starved of glucose. To prevent age-related vision loss, we need new strategies to keep blood vessels and RPE cells healthy. However, it was not clear exactly how RPE cells supply photoreceptors with glucose, and what happens when blood supplies are reduced.

          To address this question, Kurihara, Westenskow et al. used genetically modified mice to investigate how cells in the eye respond to starvation. The experiments show that when nutrients are scarce the RPE cells essentially panic, radically change their diet, and become greedy. That is to say that they double in size and begin burning fuel faster while also stockpiling extra sugar and fat for later use. In turn, the photoreceptors don’t get the energy they need and so they slowly stop working and die.

          Kurihara, Westenskow et al. also show that there is a rapid change in the way in which sugar and fat are processed in the eye during starvation. Learning how to prevent these changes in patients with age-related vision loss could protect their photoreceptors from starvation and death. The next step following on from this research is to design drugs to improve the supply of glucose and nutrients to the photoreceptors by repairing aging blood vessels and/or preventing RPE cells from stockpiling glucose for themselves.

          DOI: http://dx.doi.org/10.7554/eLife.14319.002

          Related collections

          Most cited references79

          • Record: found
          • Abstract: not found
          • Article: not found

          On the origin of cancer cells.

          O WARBURG (1956)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1.

            The pyruvate kinase isoforms PKM1 and PKM2 are alternatively spliced products of the PKM2 gene. PKM2, but not PKM1, alters glucose metabolism in cancer cells and contributes to tumorigenesis by mechanisms that are not explained by its known biochemical activity. We show that PKM2 gene transcription is activated by hypoxia-inducible factor 1 (HIF-1). PKM2 interacts directly with the HIF-1α subunit and promotes transactivation of HIF-1 target genes by enhancing HIF-1 binding and p300 recruitment to hypoxia response elements, whereas PKM1 fails to regulate HIF-1 activity. Interaction of PKM2 with prolyl hydroxylase 3 (PHD3) enhances PKM2 binding to HIF-1α and PKM2 coactivator function. Mass spectrometry and anti-hydroxyproline antibody assays demonstrate PKM2 hydroxylation on proline-403/408. PHD3 knockdown inhibits PKM2 coactivator function, reduces glucose uptake and lactate production, and increases O(2) consumption in cancer cells. Thus, PKM2 participates in a positive feedback loop that promotes HIF-1 transactivation and reprograms glucose metabolism in cancer cells. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prevalence of age-related macular degeneration in the United States.

              To estimate the prevalence and distribution of age-related macular degeneration (AMD) in the United States by age, race/ethnicity, and gender. Summary prevalence estimates of drusen 125 microm or larger, neovascular AMD, and geographic atrophy were prepared separately for black and white persons in 5-year age intervals starting at 40 years. The estimated rates were based on a meta-analysis of recent population-based studies in the United States, Australia, and Europe. These rates were applied to 2000 US Census data and to projected US population figures for 2020 to estimate the number of the US population with drusen and AMD. The overall prevalence of neovascular AMD and/or geographic atrophy in the US population 40 years and older is estimated to be 1.47% (95% confidence interval, 1.38%-1.55%), with 1.75 million citizens having AMD. The prevalence of AMD increased dramatically with age, with more than 15% of the white women older than 80 years having neovascular AMD and/or geographic atrophy. More than 7 million individuals had drusen measuring 125 microm or larger and were, therefore, at substantial risk of developing AMD. Owing to the rapidly aging population, the number of persons having AMD will increase by 50% to 2.95 million in 2020. Age-related macular degeneration was far more prevalent among white than among black persons. Age-related macular degeneration affects more than 1.75 million individuals in the United States. Owing to the rapid aging of the US population, this number will increase to almost 3 million by 2020.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                15 March 2016
                2016
                : 5
                : e14319
                Affiliations
                [1 ]deptDepartment of Cell and Molecular Biology , The Scripps Research Institute , La Jolla, United States
                [2 ]The Lowy Medical Research Institute , La Jolla, United States
                [3 ]deptCenter for Metabolomics , The Scripps Research Institute , La Jolla, United States
                [4 ]deptNational Eye Institute , National Institutes of Health , Bethesda, United States
                [5]Johns Hopkins University School of Medicine , United States
                [6]Johns Hopkins University School of Medicine , United States
                Author notes
                [‡]

                Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.

                [§]

                Department of Ophthalmology, Tokyo Medical University Hospital, Shinjuku, Tokyo, Japan.

                [†]

                These authors contributed equally to this work.

                Author information
                http://orcid.org/0000-0003-4238-9651
                Article
                14319
                10.7554/eLife.14319
                4848091
                26978795
                a576cc5e-62c4-4240-b98c-f07cfe28855a

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 09 January 2016
                : 11 March 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000053, National Eye Institute;
                Award ID: EY11254
                Award Recipient :
                Funded by: The Lowy Medical Research Institute;
                Award ID: MacTel Project
                Award Recipient :
                Funded by: Manpei Suzuki Diabetes Foundation;
                Award ID: Postdoctoral support
                Award Recipient :
                Funded by: Japan Society for the Promotion of Science Postdoctoral Fellowships for Research Abroad;
                Award ID: Postdoctoral support
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100000053, National Eye Institute;
                Award ID: Postdoctoral support
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Cell Biology
                Neuroscience
                Custom metadata
                2.5
                Mouse models in which hypoxia can be genetically triggered in retinal pigmented epithelial cells show that hypoxia-induced metabolic stress alone can lead to photoreceptor atrophy/dysfunction.

                Life sciences
                age-related macular degeneration,neurovascular crosstalk,hypoxia,mouse
                Life sciences
                age-related macular degeneration, neurovascular crosstalk, hypoxia, mouse

                Comments

                Comment on this article