4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Emergence of ceftazidime/avibactam resistance in KPC-3-producing Klebsiella pneumoniae in vivo

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives

          The β-lactam/β-lactamase inhibitor combination ceftazidime/avibactam is active against KPC-producing Enterobacterales. Herein, we present molecular and phenotypic characterization of ceftazidime/avibactam resistance in KPC-3-producing Klebsiella pneumoniae that emerged in vivo and in vitro.

          Methods

          Sequence analysis of blaKPC-3 was performed from clinical and in vitro-generated ceftazidime/avibactam-resistant K. pneumoniae isolates. Time–kill kinetics and the Galleria mellonella infection model were applied to evaluate the activity of ceftazidime/avibactam and imipenem alone and in combination.

          Results

          The ceftazidime/avibactam-resistant clinical K. pneumoniae isolate revealed the amino acid change D179Y in KPC-3. Sixteen novel mutational changes in KPC-3 among in vitro-selected ceftazidime/avibactam-resistant isolates were described. Time–kill kinetics showed the emergence of a resistant subpopulation under selection pressure with either imipenem or ceftazidime/avibactam. However, combined selection pressure with imipenem plus ceftazidime/avibactam prevented the development of resistance and resulted in bactericidal activity. Concordantly, the G. mellonella infection model revealed that monotherapy with ceftazidime/avibactam is prone to select for resistance in vivo and that combination therapy with imipenem results in significantly better survival.

          Conclusions

          Ceftazidime/avibactam is a valuable antibiotic against MDR and carbapenem-resistant Enterobacterales. Based on time–kill kinetics as well as an in vivo infection model we postulate a combination therapy of ceftazidime/avibactam and imipenem as a strategy to prevent the development of ceftazidime/avibactam resistance in KPC-producing Enterobacterales in vivo.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions.

          The spread of Enterobacteriaceae, primarily Klebsiella pneumoniae, producing KPC, VIM, IMP, and NDM carbapenemases, is causing an unprecedented public health crisis. Carbapenemase-producing enterobacteria (CPE) infect mainly hospitalized patients but also have been spreading in long-term care facilities. Given their multidrug resistance, therapeutic options are limited and, as discussed here, should be reevaluated and optimized. Based on susceptibility data, colistin and tigecycline are commonly used to treat CPE infections. Nevertheless, a review of the literature revealed high failure rates in cases of monotherapy with these drugs, whilst monotherapy with either a carbapenem or an aminoglycoside appeared to be more effective. Combination therapies not including carbapenems were comparable to aminoglycoside and carbapenem monotherapies. Higher success rates have been achieved with carbapenem-containing combinations. Pharmacodynamic simulations and experimental infections indicate that modification of the current patterns of carbapenem use against CPE warrants further attention. Epidemiological data, though fragmentary in many countries, indicate CPE foci and transmission routes, to some extent, whilst also underlining the lack of international collaborative systems that could react promptly and effectively. Fortunately, there are sound studies showing successful containment of CPE by bundles of measures, among which the most important are active surveillance cultures, separation of carriers, and assignment of dedicated nursing staff.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Emergence of Ceftazidime-Avibactam Resistance Due to Plasmid-Borne blaKPC-3 Mutations during Treatment of Carbapenem-Resistant Klebsiella pneumoniae Infections.

            Ceftazidime-avibactam is a novel β-lactam/β-lactamase inhibitor with activity against carbapenem-resistant Enterobacteriaceae (CRE) that produce Klebsiella pneumoniae carbapenemase (KPC). We report the first cases of ceftazidime-avibactam resistance to develop during treatment of CRE infections and identify resistance mechanisms. Ceftazidime-avibactam-resistant K. pneumoniae emerged in three patients after ceftazidime-avibactam treatment for 10 to 19 days. Whole-genome sequencing (WGS) of longitudinal ceftazidime-avibactam-susceptible and -resistant K. pneumoniae isolates was used to identify potential resistance mechanisms. WGS identified mutations in plasmid-borne blaKPC-3, which were not present in baseline isolates. blaKPC-3 mutations emerged independently in isolates of a novel sequence type 258 sublineage and resulted in variant KPC-3 enzymes. The mutations were validated as resistance determinants by measuring MICs of ceftazidime-avibactam and other agents following targeted gene disruption in K. pneumoniae, plasmid transfer, and blaKPC cloning into competent Escherichia coli In rank order, the impact of KPC-3 variants on ceftazidime-avibactam MICs was as follows: D179Y/T243M double substitution > D179Y > V240G. Remarkably, mutations reduced meropenem MICs ≥4-fold from baseline, restoring susceptibility in K. pneumoniae from two patients. Cefepime and ceftriaxone MICs were also reduced ≥4-fold against D179Y/T243M and D179Y variant isolates, but susceptibility was not restored. Reverse transcription-PCR revealed that expression of blaKPC-3 encoding D179Y/T243M and D179Y variants was diminished compared to blaKPC-3 expression in baseline isolates. In conclusion, the development of resistance-conferring blaKPC-3 mutations in K. pneumoniae within 10 to 19 days of ceftazidime-avibactam exposure is troubling, but clinical impact may be ameliorated if carbapenem susceptibility is restored in certain isolates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ceftazidime-Avibactam Is Superior to Other Treatment Regimens against Carbapenem-Resistant Klebsiella pneumoniae Bacteremia.

              There are no data comparing outcomes of patients treated with ceftazidime-avibactam versus comparators for carbapenem-resistant Enterobacteriaceae infections. At our center, ceftazidime-avibactam treatment of carbapenem-resistant Klebsiella pneumoniae bacteremia was associated with higher rates of clinical success (P = 0.006) and survival (P = 0.01) than other regimens. Across treatment groups, there were no differences in underlying diseases, severity of illness, source of bacteremia, or strain characteristics (97% produced K. pneumoniae carbapenemase). Aminoglycoside- and colistin-containing regimens were associated with increased rates of nephrotoxicity (P = 0.002).
                Bookmark

                Author and article information

                Journal
                Journal of Antimicrobial Chemotherapy
                Oxford University Press (OUP)
                0305-7453
                1460-2091
                November 2019
                November 01 2019
                July 31 2019
                November 2019
                November 01 2019
                July 31 2019
                : 74
                : 11
                : 3211-3216
                Affiliations
                [1 ]Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Paul-Ehrlich-Str. 40, Frankfurt am Main, Germany
                Article
                10.1093/jac/dkz330
                31365094
                a4ef8435-a20a-4a69-8007-5be54ca41165
                © 2019

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article