71
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MSCs in Space: Mesenchymal Stromal Cell Therapeutics as Enabling Technology for Long-Distance Manned Space Travel

      ,  
      Current Stem Cell Reports
      Springer Science and Business Media LLC

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose of Review

          Advancements in space travel, such as space tourism into Earth’s orbit, but also the prospect of long-distance manned space travel to other celestial bodies such as Mars, has generated a clinical need for new enabling technologies to support the long-term well-being of humans during their passage. Here, we will give an outline on the clinical need and practical considerations to MSC therapy as enabling technology for long-distance manned space travel.

          Recent Findings

          Long-distance space travel entails a threat to the health of astronaut crews due to the low gravity environment and exposure to toxic radiation in space. Multi-organ-system degenerative changes, such as decline in musculoskeletal, hematopoietic, immune system function, and in particular risk of genetic mutations and cancer, are major health concerns. Physical training, pharmacological agents, and protective shielding are among the currently available methods to counteract harmful effects. However, a potential lack of adequate shielding, side effects of pharmacological compounds, and limitations to physical training suggest a need for new countermeasures, to protect space travellers to the best extent. Here, the prospect of cell-based therapy, e.g. mesenchymal stromal/stem cells (MSCs), has been subject to intense research, due to their potent regenerative and immunomodulatory properties. Off-the-shelf MSC therapeutics can be easily maintained in space due to the ambient extremely low-temperature environment, and cryorecovery and even culturing of MSCs under microgravity were shown to be feasible.

          Summary

          Designing new therapy against harmful radiation is urgent need in space travel. Here we will discuss aspects related to clinical MSC administration to optimize their therapeutic benefit. MSC-based therapy may aid in evolving protective countermeasures for space travellers.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: not found

          Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement.

          The considerable therapeutic potential of human multipotent mesenchymal stromal cells (MSC) has generated markedly increasing interest in a wide variety of biomedical disciplines. However, investigators report studies of MSC using different methods of isolation and expansion, and different approaches to characterizing the cells. Thus it is increasingly difficult to compare and contrast study outcomes, which hinders progress in the field. To begin to address this issue, the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy proposes minimal criteria to define human MSC. First, MSC must be plastic-adherent when maintained in standard culture conditions. Second, MSC must express CD105, CD73 and CD90, and lack expression of CD45, CD34, CD14 or CD11b, CD79alpha or CD19 and HLA-DR surface molecules. Third, MSC must differentiate to osteoblasts, adipocytes and chondroblasts in vitro. While these criteria will probably require modification as new knowledge unfolds, we believe this minimal set of standard criteria will foster a more uniform characterization of MSC and facilitate the exchange of data among investigators.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multilineage potential of adult human mesenchymal stem cells.

            Human mesenchymal stem cells are thought to be multipotent cells, which are present in adult marrow, that can replicate as undifferentiated cells and that have the potential to differentiate to lineages of mesenchymal tissues, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Cells that have the characteristics of human mesenchymal stem cells were isolated from marrow aspirates of volunteer donors. These cells displayed a stable phenotype and remained as a monolayer in vitro. These adult stem cells could be induced to differentiate exclusively into the adipocytic, chondrocytic, or osteocytic lineages. Individual stem cells were identified that, when expanded to colonies, retained their multilineage potential.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Mesenchymal stem cell perspective: cell biology to clinical progress

              The terms MSC and MSCs have become the preferred acronym to describe a cell and a cell population of multipotential stem/progenitor cells commonly referred to as mesenchymal stem cells, multipotential stromal cells, mesenchymal stromal cells, and mesenchymal progenitor cells. The MSCs can differentiate to important lineages under defined conditions in vitro and in limited situations after implantation in vivo. MSCs were isolated and described about 30 years ago and now there are over 55,000 publications on MSCs readily available. Here, we have focused on human MSCs whenever possible. The MSCs have broad anti-inflammatory and immune-modulatory properties. At present, these provide the greatest focus of human MSCs in clinical testing; however, the properties of cultured MSCs in vitro suggest they can have broader applications. The medical utility of MSCs continues to be investigated in over 950 clinical trials. There has been much progress in understanding MSCs over the years, and there is a strong foundation for future scientific research and clinical applications, but also some important questions remain to be answered. Developing further methods to understand and unlock MSC potential through intracellular and intercellular signaling, biomedical engineering, delivery methods and patient selection should all provide substantial advancements in the coming years and greater clinical opportunities. The expansive and growing field of MSC research is teaching us basic human cell biology as well as how to use this type of cell for cellular therapy in a variety of clinical settings, and while much promise is evident, careful new work is still needed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Current Stem Cell Reports
                Curr Stem Cell Rep
                Springer Science and Business Media LLC
                2198-7866
                January 22 2022
                Article
                10.1007/s40778-022-00207-y
                a4d480a7-226f-4c31-b4b0-d0284f162dde
                © 2022

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content107

                Cited by8