5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative mitochondrial genome analysis of the Mongolian redfin, Chanodichthys mongolicus (Xenocyprididae) from China reveals heteroplasmy

      research-article
      , , ,
      Mitochondrial DNA. Part B, Resources
      Taylor & Francis
      Chanodichthys mongolicus, comparative mitochondrial genomes, heteroplasmy

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study determined the mitochondrial genome (mitogenome) of Chanodichthys mongolicus from China's Qiantang River and analyzed its phylogenetic history in the Subfamily Cultrinae. Next-generation sequencing was used to obtain the mitogenome of C. mongolicus, GenBank Accession Number MZ032228. The mitochondrial genome length of C. mongolicus from China's Qiantang River is 16,622 bp. The genome contains 13 protein-coding genes, 22 transfer RNAs, two ribosomal RNAs, and two central noncoding regions (the control region and the origin of light strand replication). Based on BLAST comparisons, the sequence identity of C. mongolicus MZ032228 from China's Qiantang River was 99.84% to that of Ancherythroculter wangi MG783573 from China's Nei River, 99.75% to C. mongolicus AP009060 from Russia's Black River. The phylogenetic analysis is consistent with BLAST comparisons in confirming that A. wangi MG783573 and C. mongolicus MZ032228 show a high genetic similarity. This study also confirms mitochondrial DNA heteroplasmy in C. mongolicus for the first time and documents 35 heterogeneous loci that were detected.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era

          Abstract IQ-TREE (http://www.iqtree.org, last accessed February 6, 2020) is a user-friendly and widely used software package for phylogenetic inference using maximum likelihood. Since the release of version 1 in 2014, we have continuously expanded IQ-TREE to integrate a plethora of new models of sequence evolution and efficient computational approaches of phylogenetic inference to deal with genomic data. Here, we describe notable features of IQ-TREE version 2 and highlight the key advantages over other software.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses

            Summary: Multiple sequence alignments are central to many areas of bioinformatics. It has been shown that the removal of poorly aligned regions from an alignment increases the quality of subsequent analyses. Such an alignment trimming phase is complicated in large-scale phylogenetic analyses that deal with thousands of alignments. Here, we present trimAl, a tool for automated alignment trimming, which is especially suited for large-scale phylogenetic analyses. trimAl can consider several parameters, alone or in multiple combinations, for selecting the most reliable positions in the alignment. These include the proportion of sequences with a gap, the level of amino acid similarity and, if several alignments for the same set of sequences are provided, the level of consistency across different alignments. Moreover, trimAl can automatically select the parameters to be used in each specific alignment so that the signal-to-noise ratio is optimized. Availability: trimAl has been written in C++, it is portable to all platforms. trimAl is freely available for download (http://trimal.cgenomics.org) and can be used online through the Phylemon web server (http://phylemon2.bioinfo.cipf.es/). Supplementary Material is available at http://trimal.cgenomics.org/publications. Contact: tgabaldon@crg.es
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              UFBoot2: Improving the Ultrafast Bootstrap Approximation

              Abstract The standard bootstrap (SBS), despite being computationally intensive, is widely used in maximum likelihood phylogenetic analyses. We recently proposed the ultrafast bootstrap approximation (UFBoot) to reduce computing time while achieving more unbiased branch supports than SBS under mild model violations. UFBoot has been steadily adopted as an efficient alternative to SBS and other bootstrap approaches. Here, we present UFBoot2, which substantially accelerates UFBoot and reduces the risk of overestimating branch supports due to polytomies or severe model violations. Additionally, UFBoot2 provides suitable bootstrap resampling strategies for phylogenomic data. UFBoot2 is 778 times (median) faster than SBS and 8.4 times (median) faster than RAxML rapid bootstrap on tested data sets. UFBoot2 is implemented in the IQ-TREE software package version 1.6 and freely available at http://www.iqtree.org.
                Bookmark

                Author and article information

                Journal
                Mitochondrial DNA B Resour
                Mitochondrial DNA B Resour
                Mitochondrial DNA. Part B, Resources
                Taylor & Francis
                2380-2359
                10 August 2021
                2021
                : 6
                : 9
                : 2601-2604
                Affiliations
                Institute of Fishery Science, Hangzhou Academy of Agricultural Sciences , Hangzhou, China
                Author notes
                CONTACT Nan Xie n.xie@ 123456163.com Institute of Fishery Science, Hangzhou Academy of Agricultural Sciences , Hangzhou, Zhejiang, 310024, China
                Author information
                https://orcid.org/0000-0001-7034-7235
                Article
                1961627
                10.1080/23802359.2021.1961627
                8366642
                34409154
                a4c925f6-1091-430e-98f6-310ae87dfa35
                © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 3, Tables: 0, Pages: 4, Words: 2292
                Categories
                Research Article
                Rapid Communications

                chanodichthys mongolicus,comparative mitochondrial genomes,heteroplasmy

                Comments

                Comment on this article