1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of the Physicochemical and Functional Properties of Aquasoya (Glycine max Merr.) Powder for Vegan Muffin Preparation

      ,
      Foods
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent concerns on health and sustainability have prompted the use of legumes as a source of plant-based proteins, resulting in the application of their cooking water as a substitute for egg whites. In this study, the cooking water of yellow soybeans was powdered, and, subsequently, the nutritional and functional characteristics of powders from yellow soybeans (YSP), chickpeas (CHP), and egg whites (EWP) were compared. The main components of these powders (total polyphenol, total carbohydrate, and protein), along with their hydration properties (hygroscopicity, water solubility index, and water/oil holding capacities), and emulsifying and foaming properties, were identified. The muffins prepared with YSP, CHP, and EWP were analyzed to determine their basic characteristics, such as volume, baking loss, and sensory attributes. The results of the powder analyses indicated that YSP was significantly superior to CHP and EWP, particularly in terms of holding capacities, and emulsion and foam stabilities. The sensory evaluation results showed that there was no statistically significant difference in overall acceptance among the muffin samples. Therefore, YSP can be used as an alternative to CHP or EWP, and applied as a novel ingredient in various vegan products.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships.

          Flavonoids are a class of secondary plant phenolics with significant antioxidant and chelating properties. In the human diet, they are most concentrated in fruits, vegetables, wines, teas and cocoa. Their cardioprotective effects stem from the ability to inhibit lipid peroxidation, chelate redox-active metals, and attenuate other processes involving reactive oxygen species. Flavonoids occur in foods primarily as glycosides and polymers that are degraded to variable extents in the digestive tract. Although metabolism of these compounds remains elusive, enteric absorption occurs sufficiently to reduce plasma indices of oxidant status. The propensity of a flavonoid to inhibit free-radical mediated events is governed by its chemical structure. Since these compounds are based on the flavan nucleus, the number, positions, and types of substitutions influence radical scavenging and chelating activity. The diversity and multiple mechanisms of flavonoid action, together with the numerous methods of initiation, detection and measurement of oxidative processes in vitro and in vivo offer plausible explanations for existing discrepancies in structure-activity relationships. Despite some inconsistent lines of evidence, several structure-activity relationships are well established in vitro. Multiple hydroxyl groups confer upon the molecule substantial antioxidant, chelating and prooxidant activity. Methoxy groups introduce unfavorable steric effects and increase lipophilicity and membrane partitioning. A double bond and carbonyl function in the heterocycle or polymerization of the nuclear structure increases activity by affording a more stable flavonoid radical through conjugation and electron delocalization. Further investigation of the metabolism of these phytochemicals is justified to extend structure-activity relationships (SAR) to preventive and therapeutic nutritional strategies.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: Alternatives to synthetic surfactants in the pharmaceutical field?

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes.

              The objective of this study was to characterize the phenolic compounds and antioxidant activities of U.S.-produced cool season legumes. A total of 33 cool season legume samples were selected. Some common beans and soybeans were included for comparisons. Total phenolic content (TPC), total flavonoid content (TFC), and condensed tannin content (CTC) were analyzed. Ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, and oxygen radical absorbance capacity (ORAC) were used for analyzing antioxidant properties. Color of the legume flour and the seed coat was also analyzed. TPC, TFC, CTC, FRAP, DPPH, and ORAC values of legumes were significantly different not only between classes but also among samples within each class. Among cool season legume classes, lentils possessed the highest concentrations of the phenolic compounds and antioxidant activities. Colored common beans and black soybeans exhibited higher TPC, TFC, CTC, FRAP, DPPH, and ORAC values than those of yellow peas, green peas, and chickpeas. Antioxidant activities (FRAP, DPPH, and ORAC) were strongly correlated (r= 0.96, 0.94, and 0.89, respectively, P < 0.01) with TPC. TPC and ORAC were moderately correlated (P < 0.01) with either the seed hull surface color or the flour color.
                Bookmark

                Author and article information

                Contributors
                Journal
                FOODBV
                Foods
                Foods
                MDPI AG
                2304-8158
                February 2022
                February 18 2022
                : 11
                : 4
                : 591
                Article
                10.3390/foods11040591
                35206068
                a4a492cf-f899-48b1-9c5a-7a3b1c2870a1
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article