112
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Patterned Anchorage to the Apical Extracellular Matrix Defines Tissue Shape in the Developing Appendages of Drosophila

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          How tissues acquire their characteristic shape is a fundamental unresolved question in biology. While genes have been characterized that control local mechanical forces to elongate epithelial tissues, genes controlling global forces in epithelia have yet to be identified. Here, we describe a genetic pathway that shapes appendages in Drosophila by defining the pattern of global tensile forces in the tissue. In the appendages, shape arises from tension generated by cell constriction and localized anchorage of the epithelium to the cuticle via the apical extracellular-matrix protein Dumpy (Dp). Altering Dp expression in the developing wing results in predictable changes in wing shape that can be simulated by a computational model that incorporates only tissue contraction and localized anchorage. Three other wing shape genes, narrow, tapered, and lanceolate, encode components of a pathway that modulates Dp distribution in the wing to refine the global force pattern and thus wing shape.

          Graphical Abstract

          Highlights

          • The apical extracellular matrix protein Dumpy (Dp) is required for appendage shape

          • Dp anchors the epidermis to the cuticle, generating tension during tissue contraction

          • Alteration of the pattern of Dp gives rise to predictable changes in appendage shape

          • Narrow (Nw), Tapered (Ta), and Lanceolate (Ll) affect shape by modulating Dp

          Abstract

          Regulation of global tensile forces in epithelia is one mechanism of determining tissue shape. Ray and Matamoro-Vidal et al. show that tissue contraction, in combination with localized anchorage to the cuticle by the apical extracellular matrix protein Dumpy, gives rise to anisotropic tensions that shape the appendages in the Drosophila pupa.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Hippo signaling: growth control and beyond.

          The Hippo pathway has emerged as a conserved signaling pathway that is essential for the proper regulation of organ growth in Drosophila and vertebrates. Although the mechanisms of signal transduction of the core kinases Hippo/Mst and Warts/Lats are relatively well understood, less is known about the upstream inputs of the pathway and about the downstream cellular and developmental outputs. Here, we review recently discovered mechanisms that contribute to the dynamic regulation of Hippo signaling during Drosophila and vertebrate development. We also discuss the expanding diversity of Hippo signaling functions during development, discoveries that shed light on a complex regulatory system and provide exciting new insights into the elusive mechanisms that regulate organ growth and regeneration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The C-type lectin-like domain superfamily.

            The superfamily of proteins containing C-type lectin-like domains (CTLDs) is a large group of extracellular Metazoan proteins with diverse functions. The CTLD structure has a characteristic double-loop ('loop-in-a-loop') stabilized by two highly conserved disulfide bridges located at the bases of the loops, as well as a set of conserved hydrophobic and polar interactions. The second loop, called the long loop region, is structurally and evolutionarily flexible, and is involved in Ca2+-dependent carbohydrate binding and interaction with other ligands. This loop is completely absent in a subset of CTLDs, which we refer to as compact CTLDs; these include the Link/PTR domain and bacterial CTLDs. CTLD-containing proteins (CTLDcps) were originally classified into seven groups based on their overall domain structure. Analyses of the superfamily representation in several completely sequenced genomes have added 10 new groups to the classification, and shown that it is applicable only to vertebrate CTLDcps; despite the abundance of CTLDcps in the invertebrate genomes studied, the domain architectures of these proteins do not match those of the vertebrate groups. Ca2+-dependent carbohydrate binding is the most common CTLD function in vertebrates, and apparently the ancestral one, as suggested by the many humoral defense CTLDcps characterized in insects and other invertebrates. However, many CTLDs have evolved to specifically recognize protein, lipid and inorganic ligands, including the vertebrate clade-specific snake venoms, and fish antifreeze and bird egg-shell proteins. Recent studies highlight the functional versatility of this protein superfamily and the CTLD scaffold, and suggest further interesting discoveries have yet to be made.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cell flow reorients the axis of planar polarity in the wing epithelium of Drosophila.

              Planar cell polarity (PCP) proteins form polarized cortical domains that govern polarity of external structures such as hairs and cilia in both vertebrate and invertebrate epithelia. The mechanisms that globally orient planar polarity are not understood, and are investigated here in the Drosophila wing using a combination of experiment and theory. Planar polarity arises during growth and PCP domains are initially oriented toward the well-characterized organizer regions that control growth and patterning. At pupal stages, the wing hinge contracts, subjecting wing-blade epithelial cells to anisotropic tension in the proximal-distal axis. This results in precise patterns of oriented cell elongation, cell rearrangement and cell division that elongate the blade proximo-distally and realign planar polarity with the proximal-distal axis. Mutation of the atypical Cadherin Dachsous perturbs the global polarity pattern by altering epithelial dynamics. This mechanism utilizes the cellular movements that sculpt tissues to align planar polarity with tissue shape. Copyright 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Dev Cell
                Dev. Cell
                Developmental Cell
                Cell Press
                1534-5807
                1878-1551
                10 August 2015
                10 August 2015
                : 34
                : 3
                : 310-322
                Affiliations
                [1 ]School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
                [2 ]The Francis Crick Institute, Lincoln’s Inn Fields Laboratory, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK
                [3 ]Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
                [4 ]Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
                [5 ]Department de Genètica i Microbiologia, Genomics, Bioinformatics, and Evolution Group, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
                [6 ]Center of Excellence in Experimental and Computational Developmental Biology, Developmental Biology Program, Institute of Biotechnology, University of Helsinki, P.O. Box 56, FIN-00014 Helsinki, Finland
                Author notes
                []Corresponding author robert.ray@ 123456crick.ac.uk
                [7]

                Co-first author

                [8]

                Co-senior author

                Article
                S1534-5807(15)00426-8
                10.1016/j.devcel.2015.06.019
                4539345
                26190146
                a49a0b17-a891-45fe-8d8d-bdb79ad34abb
                © 2015 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 24 October 2014
                : 2 April 2015
                : 19 June 2015
                Categories
                Article

                Developmental biology
                Developmental biology

                Comments

                Comment on this article