5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long non-coding RNA (LncRNA) HOTAIR regulates BMP9-induced osteogenic differentiation by targeting the proliferation of mesenchymal stem cells (MSCs)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Long non-coding RNAs are important regulators of biological processes, but their roles in the osteogenic differentiation of mesenchymal stem cells (MSCs) remain unclear. Here we investigated the role of murine HOX transcript antisense RNA (mHotair) in BMP9-induced osteogenic differentiation of MSCs using immortalized mouse adipose-derived cells (iMADs). Touchdown quantitative polymerase chain reaction analysis found increased mHotair expression in bones in comparison with most other tissues. Moreover, the level of mHotair in femurs peaked at the age of week-4, a period of fast skeleton development. BMP9 could induce earlier peak expression of mHotair during in vitro iMAD osteogenesis. Silencing mHotair diminished BMP9-induced ALP activity, matrix mineralization, and expression of osteogenic, chondrogenic and adipogenic markers. Cell implantation experiments further confirmed that knockdown of mHotair attenuated BMP9-induced ectopic bone formation and mineralization of iMADs, leading to more undifferentiated cells. Crystal violet staining and cell cycle analysis revealed that silencing of mHotair promoted the proliferation of iMAD cells regardless of BMP9 induction. Moreover, ectopic bone masses developed from mHotair-knockdown iMAD cells exhibited higher expression of PCNA than the control group. Taken together, our results demonstrated that murine mHotair is an important regulator of BMP9-induced MSC osteogenesis by targeting cell cycle and proliferation.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Long noncoding RNA HOTAIR reprograms chromatin state to promote cancer metastasis

          Large intervening noncoding RNAs (lincRNAs) are pervasively transcribed in the genome1, 2, 3 yet their potential involvement in human disease is not well understood4,5. Recent studies of dosage compensation, imprinting, and homeotic gene expression suggest that individual lincRNAs can function as the interface between DNA and specific chromatin remodeling activities6,7,8. Here we show that lincRNAs in the HOX loci become systematically dysregulated during breast cancer progression. The lincRNA termed HOTAIR is increased in expression in primary breast tumors and metastases, and HOTAIR expression level in primary tumors is a powerful predictor of eventual metastasis and death. Enforced expression of HOTAIR in epithelial cancer cells induced genome-wide re-targeting of Polycomb Repressive Complex 2 (PRC2) to an occupancy pattern more resembling embryonic fibroblasts, leading to altered histone H3 lysine 27 methylation, gene expression, and increased cancer invasiveness and metastasis in a manner dependent on PRC2. Conversely, loss of HOTAIR can inhibit cancer invasiveness, particularly in cells that possess excessive PRC2 activity. These findings suggest that lincRNAs play active roles in modulating the cancer epigenome and may be important targets for cancer diagnosis and therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recent advances in bone tissue engineering scaffolds.

            Bone disorders are of significant concern due to increase in the median age of our population. Traditionally, bone grafts have been used to restore damaged bone. Synthetic biomaterials are now being used as bone graft substitutes. These biomaterials were initially selected for structural restoration based on their biomechanical properties. Later scaffolds were engineered to be bioactive or bioresorbable to enhance tissue growth. Now scaffolds are designed to induce bone formation and vascularization. These scaffolds are often porous, made of biodegradable materials that harbor different growth factors, drugs, genes, or stem cells. In this review, we highlight recent advances in bone scaffolds and discuss aspects that still need to be improved. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs.

              Noncoding RNAs (ncRNA) participate in epigenetic regulation but are poorly understood. Here we characterize the transcriptional landscape of the four human HOX loci at five base pair resolution in 11 anatomic sites and identify 231 HOX ncRNAs that extend known transcribed regions by more than 30 kilobases. HOX ncRNAs are spatially expressed along developmental axes and possess unique sequence motifs, and their expression demarcates broad chromosomal domains of differential histone methylation and RNA polymerase accessibility. We identified a 2.2 kilobase ncRNA residing in the HOXC locus, termed HOTAIR, which represses transcription in trans across 40 kilobases of the HOXD locus. HOTAIR interacts with Polycomb Repressive Complex 2 (PRC2) and is required for PRC2 occupancy and histone H3 lysine-27 trimethylation of HOXD locus. Thus, transcription of ncRNA may demarcate chromosomal domains of gene silencing at a distance; these results have broad implications for gene regulation in development and disease states.
                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                Aging
                Aging (Albany NY)
                Impact Journals
                1945-4589
                15 February 2021
                10 January 2021
                : 13
                : 3
                : 4199-4214
                Affiliations
                [1 ]Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
                [2 ]Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
                [3 ]Department of Obstetrics and Gynecology, The Affiliated University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
                [4 ]Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
                [5 ]Department of Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
                [6 ]Ministry of Education Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing 400016, China
                [7 ]Department of Orthopaedic Surgery, Chongqing General Hospital, Chongqing 400021, China
                Author notes
                Correspondence to: Yulong Zou; email: yulongz@hospital.cqmu.edu.cn
                Article
                202384 202384
                10.18632/aging.202384
                7906180
                33461171
                a45c2eb5-5f8a-4048-b70e-4044b1c31030
                Copyright: © 2021 Li et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 July 2020
                : 17 November 2020
                Categories
                Research Paper

                Cell biology
                long non-coding rna,hotair,bmp9,osteogenic differentiation,mesenchymal stem cell
                Cell biology
                long non-coding rna, hotair, bmp9, osteogenic differentiation, mesenchymal stem cell

                Comments

                Comment on this article