1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      sBioSITe enables sensitive identification of the cell surface proteome through direct enrichment of biotinylated peptides

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cell surface proteins perform critical functions related to immune response, signal transduction, cell–cell interactions, and cell migration. Expression of specific cell surface proteins can determine cell-type identity, and can be altered in diseases including infections, cancer and genetic disorders. Identification of the cell surface proteome remains a challenge despite several enrichment methods exploiting their biochemical and biophysical properties.

          Methods

          Here, we report a novel method for enrichment of proteins localized to cell surface. We developed this new approach designated surface Biotinylation Site Identification Technology (sBioSITe) by adapting our previously published method for direct identification of biotinylated peptides. In this strategy, the primary amine groups of lysines on proteins on the surface of live cells are first labeled with biotin, and subsequently, biotinylated peptides are enriched by anti-biotin antibodies and analyzed by liquid chromatography–tandem mass spectrometry (LC–MS/MS).

          Results

          By direct detection of biotinylated lysines from PC-3, a prostate cancer cell line, using sBioSITe, we identified 5851 peptides biotinylated on the cell surface that were derived from 1409 proteins. Of these proteins, 533 were previously shown or predicted to be localized to the cell surface or secreted extracellularly. Several of the identified cell surface markers have known associations with prostate cancer and metastasis including CD59, 4F2 cell-surface antigen heavy chain (SLC3A2) and adhesion G protein-coupled receptor E5 (CD97). Importantly, we identified several biotinylated peptides derived from plectin and nucleolin, both of which are not annotated in surface proteome databases but have been shown to have aberrant surface localization in certain cancers highlighting the utility of this method.

          Conclusions

          Detection of biotinylation sites on cell surface proteins using sBioSITe provides a reliable method for identifying cell surface proteins. This strategy complements existing methods for detection of cell surface expressed proteins especially in discovery-based proteomics approaches.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12014-023-09445-6.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          UniProt: the universal protein knowledgebase in 2021

          (2020)
          Abstract The aim of the UniProt Knowledgebase is to provide users with a comprehensive, high-quality and freely accessible set of protein sequences annotated with functional information. In this article, we describe significant updates that we have made over the last two years to the resource. The number of sequences in UniProtKB has risen to approximately 190 million, despite continued work to reduce sequence redundancy at the proteome level. We have adopted new methods of assessing proteome completeness and quality. We continue to extract detailed annotations from the literature to add to reviewed entries and supplement these in unreviewed entries with annotations provided by automated systems such as the newly implemented Association-Rule-Based Annotator (ARBA). We have developed a credit-based publication submission interface to allow the community to contribute publications and annotations to UniProt entries. We describe how UniProtKB responded to the COVID-19 pandemic through expert curation of relevant entries that were rapidly made available to the research community through a dedicated portal. UniProt resources are available under a CC-BY (4.0) license via the web at https://www.uniprot.org/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences

            The PRoteomics IDEntifications (PRIDE) database ( https://www.ebi.ac.uk/pride/ ) is the world's largest data repository of mass spectrometry-based proteomics data. PRIDE is one of the founding members of the global ProteomeXchange (PX) consortium and an ELIXIR core data resource. In this manuscript, we summarize the developments in PRIDE resources and related tools since the previous update manuscript was published in Nucleic Acids Research in 2019. The number of submitted datasets to PRIDE Archive (the archival component of PRIDE) has reached on average around 500 datasets per month during 2021. In addition to continuous improvements in PRIDE Archive data pipelines and infrastructure, the PRIDE Spectra Archive has been developed to provide direct access to the submitted mass spectra using Universal Spectrum Identifiers. As a key point, the file format MAGE-TAB for proteomics has been developed to enable the improvement of sample metadata annotation. Additionally, the resource PRIDE Peptidome provides access to aggregated peptide/protein evidences across PRIDE Archive. Furthermore, we will describe how PRIDE has increased its efforts to reuse and disseminate high-quality proteomics data into other added-value resources such as UniProt, Ensembl and Expression Atlas.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene

              The HER-2/neu oncogene is a member of the erbB-like oncogene family, and is related to, but distinct from, the epidermal growth factor receptor. This gene has been shown to be amplified in human breast cancer cell lines. In the current study, alterations of the gene in 189 primary human breast cancers were investigated. HER-2/neu was found to be amplified from 2- to greater than 20-fold in 30% of the tumors. Correlation of gene amplification with several disease parameters was evaluated. Amplification of the HER-2/neu gene was a significant predictor of both overall survival and time to relapse in patients with breast cancer. It retained its significance even when adjustments were made for other known prognostic factors. Moreover, HER-2/neu amplification had greater prognostic value than most currently used prognostic factors, including hormonal-receptor status, in lymph node-positive disease. These data indicate that this gene may play a role in the biologic behavior and/or pathogenesis of human breast cancer.
                Bookmark

                Author and article information

                Contributors
                pandey.akhilesh@mayo.edu
                Journal
                Clin Proteomics
                Clin Proteomics
                Clinical Proteomics
                BioMed Central (London )
                1542-6416
                1559-0275
                5 December 2023
                5 December 2023
                2023
                : 20
                : 56
                Affiliations
                [1 ]Manipal Academy of Higher Education (MAHE), ( https://ror.org/02xzytt36) Manipal, Karnataka India
                [2 ]Institute of Bioinformatics, International Technology Park, ( https://ror.org/04hqfvm50) Bangalore, Karnataka India
                [3 ]Department of Laboratory Medicine and Pathology, Mayo Clinic, ( https://ror.org/03zzw1w08) 200 First Street SW, Rochester, MN 55905 USA
                [4 ]Proteomics Core, Mayo Clinic, ( https://ror.org/03zzw1w08) Rochester, MN USA
                [5 ]Department of Urology, Mayo Clinic, ( https://ror.org/02qp3tb03) Rochester, MN USA
                [6 ]Department of Immunology, Mayo Clinic, ( https://ror.org/02qp3tb03) Rochester, MN USA
                [7 ]Department of Quantitative Health Sciences, Mayo Clinic, ( https://ror.org/03zzw1w08) Rochester, MN USA
                [8 ]Center for Individualized Medicine, Mayo Clinic, ( https://ror.org/02qp3tb03) Rochester, MN USA
                Article
                9445
                10.1186/s12014-023-09445-6
                10696767
                38053024
                a45780da-7e21-4fcc-831a-757de7263e3d
                © The Author(s) 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 21 August 2023
                : 17 November 2023
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: U01CA271410
                Award Recipient :
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2023

                Molecular medicine
                biosite,surfaceome,biotinylation
                Molecular medicine
                biosite, surfaceome, biotinylation

                Comments

                Comment on this article