52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effects of Ploidy and Recombination on Evolution of Robustness in a Model of the Segment Polarity Network

      research-article
      * ,
      PLoS Computational Biology
      Public Library of Science

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many genetic networks are astonishingly robust to quantitative variation, allowing these networks to continue functioning in the face of mutation and environmental perturbation. However, the evolution of such robustness remains poorly understood for real genetic networks. Here we explore whether and how ploidy and recombination affect the evolution of robustness in a detailed computational model of the segment polarity network. We introduce a novel computational method that predicts the quantitative values of biochemical parameters from bit sequences representing genotype, allowing our model to bridge genotype to phenotype. Using this, we simulate 2,000 generations of evolution in a population of individuals under stabilizing and truncation selection, selecting for individuals that could sharpen the initial pattern of engrailed and wingless expression. Robustness was measured by simulating a mutation in the network and measuring the effect on the engrailed and wingless patterns; higher robustness corresponded to insensitivity of this pattern to perturbation. We compared robustness in diploid and haploid populations, with either asexual or sexual reproduction. In all cases, robustness increased, and the greatest increase was in diploid sexual populations; diploidy and sex synergized to evolve greater robustness than either acting alone. Diploidy conferred increased robustness by allowing most deleterious mutations to be rescued by a working allele. Sex (recombination) conferred a robustness advantage through “survival of the compatible”: those alleles that can work with a wide variety of genetically diverse partners persist, and this selects for robust alleles.

          Author Summary

          Most so-called “higher organisms” are diploid (have two copies of each gene) and reproduce sexually. Diploidy may be advantageous if one functional copy can mask the effects of a mutation in the other copy; however, it is a liability if most mutations are dominant. Sex can increase genetic diversity and the rate of evolution by creating new combinations of alleles that might function better together but can also disrupt working combinations. Given these trade-offs, why are sex and diploidy so common, and why do they occur so often together? We hypothesize that sex and diploidy allow gene networks to evolve to function more robustly in the face of genetic and environmental variation. This robustness would be advantageous because organisms are exposed to constantly changing environments and all genes undergo mutation. To test this hypothesis, we simulated evolution in a model of the segment polarity network, a well-studied group of genes essential for proper development in many organisms. We compared the robustness of haploid and diploid populations that reproduced either sexually or asexually. Sexually reproducing diploid populations evolved the greatest robustness, suggesting an explanation for the selective advantage of diploid sexual reproduction.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          The complete genome of an individual by massively parallel DNA sequencing.

          The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of 'genomic medicine'. However, the formidable size of the diploid human genome, approximately 6 gigabases, has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, this limitation must be overcome. Here we report the DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels. This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods. Comparison of the sequence to the reference genome led to the identification of 3.3 million single nucleotide polymorphisms, of which 10,654 cause amino-acid substitution within the coding sequence. In addition, we accurately identified small-scale (2-40,000 base pair (bp)) insertion and deletion polymorphism as well as copy number variation resulting in the large-scale gain and loss of chromosomal segments ranging from 26,000 to 1.5 million base pairs. Overall, these results agree well with recent results of sequencing of a single individual by traditional methods. However, in addition to being faster and significantly less expensive, this sequencing technology avoids the arbitrary loss of genomic sequences inherent in random shotgun sequencing by bacterial cloning because it amplifies DNA in a cell-free system. As a result, we further demonstrate the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing. This is the first genome sequenced by next-generation technologies. Therefore it is a pilot for the future challenges of 'personalized genome sequencing'.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mapping and sequencing of structural variation from eight human genomes.

            Genetic variation among individual humans occurs on many different scales, ranging from gross alterations in the human karyotype to single nucleotide changes. Here we explore variation on an intermediate scale--particularly insertions, deletions and inversions affecting from a few thousand to a few million base pairs. We employed a clone-based method to interrogate this intermediate structural variation in eight individuals of diverse geographic ancestry. Our analysis provides a comprehensive overview of the normal pattern of structural variation present in these genomes, refining the location of 1,695 structural variants. We find that 50% were seen in more than one individual and that nearly half lay outside regions of the genome previously described as structurally variant. We discover 525 new insertion sequences that are not present in the human reference genome and show that many of these are variable in copy number between individuals. Complete sequencing of 261 structural variants reveals considerable locus complexity and provides insights into the different mutational processes that have shaped the human genome. These data provide the first high-resolution sequence map of human structural variation--a standard for genotyping platforms and a prelude to future individual genome sequencing projects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evolutionary changes in cis and trans gene regulation.

              Differences in gene expression are central to evolution. Such differences can arise from cis-regulatory changes that affect transcription initiation, transcription rate and/or transcript stability in an allele-specific manner, or from trans-regulatory changes that modify the activity or expression of factors that interact with cis-regulatory sequences. Both cis- and trans-regulatory changes contribute to divergent gene expression, but their respective contributions remain largely unknown. Here we examine the distribution of cis- and trans-regulatory changes underlying expression differences between closely related Drosophila species, D. melanogaster and D. simulans, and show functional cis-regulatory differences by comparing the relative abundance of species-specific transcripts in F1 hybrids. Differences in trans-regulatory activity were inferred by comparing the ratio of allelic expression in hybrids with the ratio of gene expression between species. Of 29 genes with interspecific expression differences, 28 had differences in cis-regulation, and these changes were sufficient to explain expression divergence for about half of the genes. Trans-regulatory differences affected 55% (16 of 29) of genes, and were always accompanied by cis-regulatory changes. These data indicate that interspecific expression differences are not caused by select trans-regulatory changes with widespread effects, but rather by many cis-acting changes spread throughout the genome.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                February 2009
                February 2009
                27 February 2009
                : 5
                : 2
                : e1000296
                Affiliations
                [1]Center for Cell Dynamics, Friday Harbor Labs, University of Washington, Friday Harbor, Washington, United States of America
                University of Texas at Austin, United States of America
                Author notes

                Conceived and designed the experiments: KJK VMF. Performed the experiments: KJK VMF. Analyzed the data: KJK VMF. Contributed reagents/materials/analysis tools: KJK VMF. Wrote the paper: KJK.

                Article
                08-PLCB-RA-0457R2
                10.1371/journal.pcbi.1000296
                2637435
                19247428
                a43c4840-9fcd-4631-8480-29b21fdb6aa8
                This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
                History
                : 9 June 2008
                : 20 January 2009
                Page count
                Pages: 18
                Categories
                Research Article
                Biochemistry/Molecular Evolution
                Biochemistry/Theory and Simulation
                Biochemistry/Transcription and Translation
                Cell Biology/Developmental Molecular Mechanisms
                Computational Biology
                Computational Biology/Evolutionary Modeling
                Computational Biology/Molecular Dynamics
                Computational Biology/Population Genetics
                Computational Biology/Signaling Networks
                Computational Biology/Systems Biology
                Developmental Biology/Developmental Evolution
                Developmental Biology/Pattern Formation
                Evolutionary Biology/Developmental Evolution
                Molecular Biology/Molecular Evolution
                Physiology/Pattern Formation

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article