24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Micro-RNA-155 is induced by K-Ras oncogenic signal and promotes ROS stress in pancreatic cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The oncogenic K-Ras can transform various mammalian cells and plays a critical role in development of pancreatic cancer. MicroRNAs (miRNA) have been shown to contribute to tumorigenic progression. However, the nature of miRNAs involved in K-Ras transformation remains to be investigated. Here, by using microarray we identified miR-155 as the most upregulated miRNA after both acute and prolonged activation of K-Ras in a doxycyline-inducible system. Pharmacological inhibition of MAPK and NF-κB pathway blocked the induction of miR-155 in response to K-Ras activation. Overexpression of miR-155 caused inhibition of Foxo3a, leading to decrease of major antioxidants including SOD2 and catalase, and enhanced pancreatic cell proliferation induced by ROS generation. Importantly, correlations of K-Ras, miR-155 and Foxo3a were also validated in human pancreatic cancer tissues. Therefore, we propose that miR-155 plays an important role in oncogenic K-Ras transformation mediated by cellular redox regulation.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Genetics and biology of pancreatic ductal adenocarcinoma.

          Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in the United States with a median survival of <6 mo and a dismal 5-yr survival rate of 3%-5%. The cancer's lethal nature stems from its propensity to rapidly disseminate to the lymphatic system and distant organs. This aggressive biology and resistance to conventional and targeted therapeutic agents leads to a typical clinical presentation of incurable disease at the time of diagnosis. The well-defined serial histopathologic picture and accompanying molecular profiles of PDAC and its precursor lesions have provided the framework for emerging basic and translational research. Recent advances include insights into the cancer's cellular origins, high-resolution genomic profiles pointing to potential new therapeutic targets, and refined mouse models reflecting both the genetics and histopathologic evolution of human PDAC. This confluence of developments offers the opportunity for accelerated discovery and the future promise of improved treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pancreatic cancer biology and genetics.

            Pancreatic ductal adenocarcinoma is an aggressive and devastating disease, which is characterized by invasiveness, rapid progression and profound resistance to treatment. Advances in pathological classification and cancer genetics have improved our descriptive understanding of this disease; however, important aspects of pancreatic cancer biology remain poorly understood. What is the pathogenic role of specific gene mutations? What is the cell of origin? And how does the stroma contribute to tumorigenesis? A better understanding of pancreatic cancer biology should lead the way to more effective treatments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              miR-155 gene: a typical multifunctional microRNA.

              In the last years small RNA molecules, i.e. microRNA (miRNA) encoded by miR genes, have been found to play a crucial role in regulating gene expression of a considerable part of plant's and animal's genome. Here, we report the essential information on biogenesis of miRNAs and recent evidence on their important role in human diseases. Emphasis has been given to miR-155, since this molecule represents a typical multifunctional miRNA. Recent data indicate that miR-155 has distinct expression profiles and plays a crucial role in various physiological and pathological processes such as haematopoietic lineage differentiation, immunity, inflammation, cancer, and cardiovascular diseases. Moreover, miR-155 has been found to be implicated in viral infections, particularly in those caused by DNA viruses. The available experimental evidence indicating that miR-155 is over expressed in a variety of malignant tumors allows us to include this miRNA in the list of genes of paramount importance in cancer diagnosis and prognosis. Exogenous molecular control in vivo of miR-155 expression could open up new ways to restrain malignant growth and viral infections, or to attenuate the progression of cardiovascular diseases.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                28 August 2015
                12 May 2015
                : 6
                : 25
                : 21148-21158
                Affiliations
                1 Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
                2 Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, China
                3 Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
                4 Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
                Author notes
                Correspondence to: Yumin Hu, huym@ 123456sysucc.org.cn
                Article
                10.18632/oncotarget.4125
                4673256
                26020803
                a3daaf4d-8172-4c15-8081-7ebcdc76e1d9
                Copyright: © 2015 Wang et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 5 November 2014
                : 2 May 2015
                Categories
                Research Paper

                Oncology & Radiotherapy
                k-ras,mir-155,reactive oxygen species,pancreatic cancer
                Oncology & Radiotherapy
                k-ras, mir-155, reactive oxygen species, pancreatic cancer

                Comments

                Comment on this article