1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A new genus of treeshrew and other micromammals from the middle Miocene hominoid locality of Ramnagar, Udhampur District, Jammu and Kashmir, India

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The fossil record of treeshrews, hedgehogs, and other micromammals from the Lower Siwaliks of India is sparse. Here, we report on a new genus and species of fossil treeshrew, specimens of the hedgehog Galerix, and other micromammals from the middle Miocene (Lower Siwalik) deposits surrounding Ramnagar (Udhampur District, Jammu and Kashmir), at a fossil locality known as Dehari. The treeshrew from Dehari ( Sivatupaia ramnagarensis n. gen. n. sp.) currently represents the oldest record of fossil tupaiids in the Siwaliks, extending their time range by ca. 2.5–4.0 Myr in the region. Dietary analyses suggest that the new tupaiid was likely adapted for a less mechanically challenging or more frugivorous diet compared to other extant and fossil tupaiids. The occurrence of Galerix has only been recently documented from the Indian Siwaliks and the Dehari specimens help establish the likely presence of a relatively large Siwalik Galerix species in the Ramnagar region. In addition to the new treeshrew and hedgehogs, new specimens of the rodents Kanisamys indicus, Sayimys sivalensis, and Murinae indet. from Dehari help confirm that age estimates for the Ramnagar region are equivalent to the Chinji Formation in Pakistan, most likely corresponding to the middle to upper part of the Chinji Formation.

          UUID: http://zoobank.org/56fb160c-2df8-4cd3-be91-af4dc02d0979

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          The placental mammal ancestor and the post-K-Pg radiation of placentals.

          To discover interordinal relationships of living and fossil placental mammals and the time of origin of placentals relative to the Cretaceous-Paleogene (K-Pg) boundary, we scored 4541 phenomic characters de novo for 86 fossil and living species. Combining these data with molecular sequences, we obtained a phylogenetic tree that, when calibrated with fossils, shows that crown clade Placentalia and placental orders originated after the K-Pg boundary. Many nodes discovered using molecular data are upheld, but phenomic signals overturn molecular signals to show Sundatheria (Dermoptera + Scandentia) as the sister taxon of Primates, a close link between Proboscidea (elephants) and Sirenia (sea cows), and the monophyly of echolocating Chiroptera (bats). Our tree suggests that Placentalia first split into Xenarthra and Epitheria; extinct New World species are the oldest members of Afrotheria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-level similarity of dentitions in carnivorans and rodents.

            The study of mammalian evolution depends greatly on understanding the evolution of teeth and the relationship of tooth shape to diet. Links between gross tooth shape, function and diet have been proposed since antiquity, stretching from Aristotle to Cuvier, Owen and Osborn. So far, however, the possibilities for exhaustive, quantitative comparisons between greatly different tooth shapes have been limited. Cat teeth and mouse teeth, for example, are fundamentally distinct in shape and structure as a result of independent evolutionary change over tens of millions of years. There is difficulty in establishing homology between their tooth components or in summarizing their tooth shapes, yet both carnivorans and rodents possess a comparable spectrum of dietary specializations from animals to plants. Here we introduce homology-free techniques to measure the phenotypic complexity of the three-dimensional shape of tooth crowns. In our geographic information systems (GIS) analysis of 441 teeth from 81 species of carnivorans and rodents, we show that the surface complexity of tooth crowns directly reflects the foods they consume. Moreover, the absolute values of dental complexity for individual dietary classes correspond between carnivorans and rodents, illustrating a high-level similarity between overall tooth shapes despite a lack of low-level similarity of specific tooth components. These results suggest that scale-independent forces have determined the high-level dental shape in lineages that are widely divergent in size, ecology and life history. This link between diet and phenotype will be useful for inferring the ecology of extinct species and illustrates the potential of fast-throughput, high-level analysis of the phenotype.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular and genomic data identify the closest living relative of primates.

              A full understanding of primate morphological and genomic evolution requires the identification of their closest living relative. In order to resolve the ancestral relationships among primates and their closest relatives, we searched multispecies genome alignments for phylogenetically informative rare genomic changes within the superordinal group Euarchonta, which includes the orders Primates, Dermoptera (colugos), and Scandentia (treeshrews). We also constructed phylogenetic trees from 14 kilobases of nuclear genes for representatives from most major primate lineages, both extant colugos, and multiple treeshrews, including the pentail treeshrew, Ptilocercus lowii, the only living member of the family Ptilocercidae. A relaxed molecular clock analysis including Ptilocercus suggests that treeshrews arose approximately 63 million years ago. Our data show that colugos are the closest living relatives of primates and indicate that their divergence occurred in the Cretaceous.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Journal of Paleontology
                J. Paleontol.
                Cambridge University Press (CUP)
                0022-3360
                1937-2337
                November 2022
                May 27 2022
                November 2022
                : 96
                : 6
                : 1318-1335
                Article
                10.1017/jpa.2022.41
                a3a5a639-ce39-44e8-a90b-27bee7cbdb5d
                © 2022

                https://www.cambridge.org/core/terms

                History

                Comments

                Comment on this article