There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Triboelectrification is one of the most common effects in our daily life, but it is usually taken as a negative effect with very limited positive applications. Here, we invented a triboelectric nanogenerator (TENG) based on organic materials that is used to convert mechanical energy into electricity. The TENG is based on the conjunction of triboelectrification and electrostatic induction, and it utilizes the most common materials available in our daily life, such as papers, fabrics, PTFE, PDMS, Al, PVC etc. In this short review, we first introduce the four most fundamental modes of TENG, based on which a range of applications have been demonstrated. The area power density reaches 1200 W m(-2), volume density reaches 490 kW m(-3), and an energy conversion efficiency of ∼50-85% has been demonstrated. The TENG can be applied to harvest all kinds of mechanical energy that is available in our daily life, such as human motion, walking, vibration, mechanical triggering, rotation energy, wind, a moving automobile, flowing water, rain drops, tide and ocean waves. Therefore, it is a new paradigm for energy harvesting. Furthermore, TENG can be a sensor that directly converts a mechanical triggering into a self-generated electric signal for detection of motion, vibration, mechanical stimuli, physical touching, and biological movement. After a summary of TENG for micro-scale energy harvesting, mega-scale energy harvesting, and self-powered systems, we will present a set of questions that need to be discussed and explored for applications of the TENG. Lastly, since the energy conversion efficiencies for each mode can be different although the materials are the same, depending on the triggering conditions and design geometry. But one common factor that determines the performance of all the TENGs is the charge density on the two surfaces, the saturation value of which may independent of the triggering configurations of the TENG. Therefore, the triboelectric charge density or the relative charge density in reference to a standard material (such as polytetrafluoroethylene (PTFE)) can be taken as a measuring matrix for characterizing the performance of the material for the TENG.
Triboelectric nanogenerators have been invented as a highly efficient, cost-effective and easy scalable energy-harvesting technology for converting ambient mechanical energy into electricity. Four basic working modes have been demonstrated, each of which has different designs to accommodate the corresponding mechanical triggering conditions. A common standard is thus required to quantify the performance of the triboelectric nanogenerators so that their outputs can be compared and evaluated. Here we report figure-of-merits for defining the performance of a triboelectric nanogenerator, which is composed of a structural figure-of-merit related to the structure and a material figure of merit that is the square of the surface charge density. The structural figure-of-merit is derived and simulated to compare the triboelectric nanogenerators with different configurations. A standard method is introduced to quantify the material figure-of-merit for a general surface. This study is likely to establish the standards for developing TENGs towards practical applications and industrialization.
[1
]School of Materials Science and Engineering; Georgia Institute of Technology; Atlanta
GA 30332-0245 USA
[2
]Beijing Institute of Nanoenergy and Nanosystems; Chinese Academy of Sciences; National
Center for Nanoscience and Technology (NCNST); Beijing 100083 P. R. China
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.