42
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Smell images and the flavour system in the human brain

      Nature
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Flavour perception is one of the most complex of human behaviours. It involves almost all of the senses, particularly the sense of smell, which is involved through odour images generated in the olfactory pathway. In the human brain, the perceptual systems are closely linked to systems for learning, memory, emotion and language, so distributed neural mechanisms contribute to food preference and food cravings. Greater recognition of the role of the brain's flavour system and its connection with eating behaviour is needed for a deeper understanding of why people eat what they do, and to generate better recommendations about diet and nutrition.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Architectonic subdivision of the human orbital and medial prefrontal cortex.

          The structure of the human orbital and medial prefrontal cortex (OMPFC) was investigated using five histological and immunohistochemical stains and was correlated with a previous analysis in macaque monkeys [Carmichael and Price (1994) J. Comp. Neurol. 346:366-402]. A cortical area was recognized if it was distinct with at least two stains and was found in similar locations in different brains. All of the areas recognized in the macaque OMPFC have counterparts in humans. Areas 11, 13, and 14 were subdivided into areas 11m, 11l, 13a, 13b, 13m, 13l, 14r, and 14c. Within area 10, the region corresponding to area 10m in monkeys was divided into 10m and 10r, and area 10o (orbital) was renamed area 10p (polar). Areas 47/12r, 47/12m, 47/12l, and 47/12s occupy the lateral orbital cortex, corresponding to monkey areas 12r, 12m, 12l, and 12o. The agranular insula (areas Iam, Iapm, Iai, and Ial) extends onto the caudal orbital surface and into the horizontal ramus of the lateral sulcus. The growth of the frontal pole in humans has pushed area 25 and area 32pl, which corresponds to the prelimbic area 32 in Brodmann's monkey brain map, caudal and ventral to the genu of the corpus callosum. Anterior cingulate areas 24a and 24b also extend ventral to the genu of the corpus callosum. Area 32ac, corresponding to the dorsal anterior cingulate area 32 in Brodmann's human brain map, is anterior and dorsal to the genu. The parallel organization of the OMPFC in monkeys and humans allows experimental data from monkeys to be applied to studies of the human cortex. Copyright 2003 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            How can drug addiction help us understand obesity?

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The olfactory receptor gene superfamily of the mouse

              Olfactory receptor (OR) genes are the largest gene superfamily in vertebrates. We have identified the mouse OR genes from the nearly complete Celera mouse genome by a comprehensive data mining strategy. We found 1,296 mouse OR genes (including 20% pseudogenes), which can be classified into 228 families. OR genes are distributed in 27 clusters on all mouse chromosomes except 12 and Y. One OR gene cluster matches a known locus mediating a specific anosmia, indicating the anosmia may be due directly to the loss of receptors. A large number of apparently functional 'fish-like' Class I OR genes in the mouse genome may have important roles in mammalian olfaction. Human ORs cover a similar 'receptor space' as the mouse ORs, suggesting that the human olfactory system has retained the ability to recognize a broad spectrum of chemicals even though humans have lost nearly two-thirds of the OR genes as compared to mice.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                November 2006
                November 15 2006
                November 2006
                : 444
                : 7117
                : 316-321
                Article
                10.1038/nature05405
                17108956
                a388c22b-8cff-4604-923e-290c1fae1f8f
                © 2006

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article