13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Role of the Three-Phase Boundary of the Platinum–Support Interface in Catalysis: A Model Catalyst Kinetic Study

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A series of microstructured, supported platinum (Pt) catalyst films (supported on single-crystal yttria-stabilized zirconia) and an appropriate Pt catalyst reference system (supported on single-crystal alumina) were fabricated using pulsed laser deposition and ion-beam etching. The thin films exhibit area-specific lengths of the three-phase boundary (length of three-phase boundary between the Pt, support, and gas phase divided by the superficial area of the sample) that vary over 4 orders of magnitude from 4.5 × 10 2 to 4.9 × 10 6 m m –2, equivalent to structural length scales of 0.2 μm to approximately 9000 μm. The catalyst films have been characterized using X-ray diffraction, atomic force microscopy, high-resolution scanning electron microscopy, and catalytic activity tests employing the carbon monoxide oxidation reaction. When Pt is supported on yttria-stabilized zirconia, the reaction rate clearly depends upon the area-specific length of the three-phase boundary, l(tpb). A similar relationship is not observed when Pt is supported on alumina. We suggest that the presence of the three-phase boundary provides an extra channel of oxygen supply to the Pt through diffusion in or on the yttria-stabilized zirconia support coupled with surface diffusion across the Pt.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: not found
          • Article: not found

          Platinum-based nanostructured materials: synthesis, properties, and applications.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Spillover in Heterogeneous Catalysis

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters.

              Kinetic, isotopic, and infrared studies on well-defined dispersed Pt clusters are combined here with first-principle theoretical methods on model cluster surfaces to probe the mechanism and structural requirements for CO oxidation catalysis at conditions typical of its industrial practice. CO oxidation turnover rates and the dynamics and thermodynamics of adsorption-desorption processes on cluster surfaces saturated with chemisorbed CO were measured on 1-20 nm Pt clusters under conditions of strict kinetic control. Turnover rates are proportional to O(2) pressure and inversely proportional to CO pressure, consistent with kinetically relevant irreversible O(2) activation steps on vacant sites present within saturated CO monolayers. These conclusions are consistent with the lack of isotopic scrambling in C(16)O-(18)O(2)-(16)O(2) reactions, and with infrared bands for chemisorbed CO that did not change within a CO pressure range that strongly influenced CO oxidation turnover rates. Density functional theory estimates of rate and equilibrium constants show that the kinetically relevant O(2) activation steps involve direct O(2)* (or O(2)) reactions with CO* to form reactive O*-O-C*=O intermediates that decompose to form CO(2) and chemisorbed O*, instead of unassisted activation steps involving molecular adsorption and subsequent dissociation of O(2). These CO-assisted O(2) dissociation pathways avoid the higher barriers imposed by the spin-forbidden transitions required for unassisted O(2) dissociation on surfaces saturated with chemisorbed CO. Measured rate parameters for CO oxidation were independent of Pt cluster size; these parameters depend on the ratio of rate constants for O(2) reactions with CO* and CO adsorption equilibrium constants, which reflect the respective activation barriers and reaction enthalpies for these two steps. Infrared spectra during isotopic displacement and thermal desorption with (12)CO-(13)CO mixtures showed that the binding, dynamics, and thermodynamics of CO chemisorbed at saturation coverages do not depend on Pt cluster size in a range that strongly affects the coordination of Pt atoms exposed at cluster surfaces. These data and their theoretical and mechanistic interpretations indicate that the remarkable structure insensitivity observed for CO oxidation reactions reflects average CO binding properties that are essentially independent of cluster size. Theoretical estimates of rate and equilibrium constants for surface reactions and CO adsorption show that both parameters increase as the coordination of exposed Pt atoms decreases in Pt(201) cluster surfaces; such compensation dampens but does not eliminate coordination and cluster size effects on measured rate constants. The structural features and intrinsic non-uniformity of cluster surfaces weaken when CO forms saturated monolayers on such surfaces, apparently because surfaces and adsorbates restructure to balance CO surface binding and CO-CO interaction energies.
                Bookmark

                Author and article information

                Journal
                ACS Catal
                ACS Catal
                cs
                accacs
                ACS Catalysis
                American Chemical Society
                2155-5435
                22 July 2016
                02 September 2016
                : 6
                : 9
                : 5865-5872
                Affiliations
                []School of Chemical Engineering and Advanced Materials, Newcastle University , Merz Court, Newcastle-upon-Tyne NE1 7RU, U.K.
                []Institute for Physical Chemistry, Justus-Liebig-University of Giessen , Heinrich-Buff-Ring 17, 35392 Giessen, Germany
                Author notes
                Article
                10.1021/acscatal.6b00829
                5031120
                a31268b9-d10d-4dff-8cae-deeef928aeed
                Copyright © 2016 American Chemical Society

                This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

                History
                : 22 March 2016
                : 18 July 2016
                Categories
                Research Article
                Custom metadata
                cs6b00829
                cs-2016-00829p

                model catalysts,patterned catalysts,three-phase boundary,carbon monoxide kinetics

                Comments

                Comment on this article