7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of textiles as fomites in the healthcare environment: a review of the infection control risk

      research-article
      ,
      PeerJ
      PeerJ Inc.
      Textiles, Linen, Healthcare uniforms, Fomite, Laundry, Laundering, Decontamination, Infection control

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Infectious diseases are a significant threat in both healthcare and community settings. Healthcare associated infections (HCAIs) in particular are a leading cause of complications during hospitalisation. Contamination of the healthcare environment is recognised as a source of infectious disease yet the significance of porous surfaces including healthcare textiles as fomites is not well understood. It is currently assumed there is little infection risk from textiles due to a lack of direct epidemiological evidence. Decontamination of healthcare textiles is achieved with heat and/or detergents by commercial or in-house laundering with the exception of healthcare worker uniforms which are laundered domestically in some countries. The emergence of the COVID-19 pandemic has increased the need for rigorous infection control including effective decontamination of potential fomites in the healthcare environment. This article aims to review the evidence for the role of textiles in the transmission of infection, outline current procedures for laundering healthcare textiles and review studies evaluating the decontamination efficacy of domestic and industrial laundering.

          Methodology

          Pubmed, Google Scholar and Web of Science were searched for publications pertaining to the survival and transmission of microorganisms on textiles with a particular focus on the healthcare environment.

          Results

          A number of studies indicate that microorganisms survive on textiles for extended periods of time and can transfer on to skin and other surfaces suggesting it is biologically plausible that HCAIs and other infectious diseases can be transmitted directly through contact with contaminated textiles. Accordingly, there are a number of case studies that link small outbreaks with inadequate laundering or infection control processes surrounding healthcare laundry. Studies have also demonstrated the survival of potential pathogens during laundering of healthcare textiles, which may increase the risk of infection supporting the data published on specific outbreak case studies.

          Conclusions

          There are no large-scale epidemiological studies demonstrating a direct link between HCAIs and contaminated textiles yet evidence of outbreaks from published case studies should not be disregarded. Adequate microbial decontamination of linen and infection control procedures during laundering are required to minimise the risk of infection from healthcare textiles. Domestic laundering of healthcare worker uniforms is a particular concern due to the lack of control and monitoring of decontamination, offering a route for potential pathogens to enter the clinical environment. Industrial laundering of healthcare worker uniforms provides greater assurances of adequate decontamination compared to domestic laundering, due to the ability to monitor laundering parameters; this is of particular importance during the COVID-19 pandemic to minimise any risk of SARS-CoV-2 transmission.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster

          Summary Background An ongoing outbreak of pneumonia associated with a novel coronavirus was reported in Wuhan city, Hubei province, China. Affected patients were geographically linked with a local wet market as a potential source. No data on person-to-person or nosocomial transmission have been published to date. Methods In this study, we report the epidemiological, clinical, laboratory, radiological, and microbiological findings of five patients in a family cluster who presented with unexplained pneumonia after returning to Shenzhen, Guangdong province, China, after a visit to Wuhan, and an additional family member who did not travel to Wuhan. Phylogenetic analysis of genetic sequences from these patients were done. Findings From Jan 10, 2020, we enrolled a family of six patients who travelled to Wuhan from Shenzhen between Dec 29, 2019 and Jan 4, 2020. Of six family members who travelled to Wuhan, five were identified as infected with the novel coronavirus. Additionally, one family member, who did not travel to Wuhan, became infected with the virus after several days of contact with four of the family members. None of the family members had contacts with Wuhan markets or animals, although two had visited a Wuhan hospital. Five family members (aged 36–66 years) presented with fever, upper or lower respiratory tract symptoms, or diarrhoea, or a combination of these 3–6 days after exposure. They presented to our hospital (The University of Hong Kong-Shenzhen Hospital, Shenzhen) 6–10 days after symptom onset. They and one asymptomatic child (aged 10 years) had radiological ground-glass lung opacities. Older patients (aged >60 years) had more systemic symptoms, extensive radiological ground-glass lung changes, lymphopenia, thrombocytopenia, and increased C-reactive protein and lactate dehydrogenase levels. The nasopharyngeal or throat swabs of these six patients were negative for known respiratory microbes by point-of-care multiplex RT-PCR, but five patients (four adults and the child) were RT-PCR positive for genes encoding the internal RNA-dependent RNA polymerase and surface Spike protein of this novel coronavirus, which were confirmed by Sanger sequencing. Phylogenetic analysis of these five patients' RT-PCR amplicons and two full genomes by next-generation sequencing showed that this is a novel coronavirus, which is closest to the bat severe acute respiatory syndrome (SARS)-related coronaviruses found in Chinese horseshoe bats. Interpretation Our findings are consistent with person-to-person transmission of this novel coronavirus in hospital and family settings, and the reports of infected travellers in other geographical regions. Funding The Shaw Foundation Hong Kong, Michael Seak-Kan Tong, Respiratory Viral Research Foundation Limited, Hui Ming, Hui Hoy and Chow Sin Lan Charity Fund Limited, Marina Man-Wai Lee, the Hong Kong Hainan Commercial Association South China Microbiology Research Fund, Sanming Project of Medicine (Shenzhen), and High Level-Hospital Program (Guangdong Health Commission).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents

            Summary Currently, the emergence of a novel human coronavirus, SARS-CoV-2, has become a global health concern causing severe respiratory tract infections in humans. Human-to-human transmissions have been described with incubation times between 2-10 days, facilitating its spread via droplets, contaminated hands or surfaces. We therefore reviewed the literature on all available information about the persistence of human and veterinary coronaviruses on inanimate surfaces as well as inactivation strategies with biocidal agents used for chemical disinfection, e.g. in healthcare facilities. The analysis of 22 studies reveals that human coronaviruses such as Severe Acute Respiratory Syndrome (SARS) coronavirus, Middle East Respiratory Syndrome (MERS) coronavirus or endemic human coronaviruses (HCoV) can persist on inanimate surfaces like metal, glass or plastic for up to 9 days, but can be efficiently inactivated by surface disinfection procedures with 62–71% ethanol, 0.5% hydrogen peroxide or 0.1% sodium hypochlorite within 1 minute. Other biocidal agents such as 0.05–0.2% benzalkonium chloride or 0.02% chlorhexidine digluconate are less effective. As no specific therapies are available for SARS-CoV-2, early containment and prevention of further spread will be crucial to stop the ongoing outbreak and to control this novel infectious thread.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stability of SARS-CoV-2 in different environmental conditions

              We previously reported the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in different clinical samples. 1 This virus can be detected on different surfaces in a contaminated site. 2 Here, we report the stability of SARS-CoV-2 in different environmental conditions. We first measured the stability of SARS-CoV-2 at different temperatures. SARS-CoV-2 in virus transport medium (final concentration ∼6·8 log unit of 50% tissue culture infectious dose [TCID50] per mL) was incubated for up to 14 days and then tested for its infectivity (appendix p 1). The virus is highly stable at 4°C, but sensitive to heat. At 4°C, there was only around a 0·7 log-unit reduction of infectious titre on day 14. With the incubation temperature increased to 70°C, the time for virus inactivation was reduced to 5 mins. We further investigated the stability of this virus on different surfaces. Briefly, a 5 μL droplet of virus culture (∼7·8 log unit of TCID50 per mL) was pipetted on a surface (appendix p 1; ∼cm2 per piece) and left at room temperature (22°C) with a relative humidity of around 65%. The inoculated objects retrieved at desired time-points were immediately soaked with 200 μL of virus transport medium for 30 mins to elute the virus. Therefore, this recovery of virus does not necessarily reflect the potential to pick up the virus from casual contact. No infectious virus could be recovered from printing and tissue papers after a 3-hour incubation, whereas no infectious virus could be detected from treated wood and cloth on day 2. By contrast, SARS-CoV-2 was more stable on smooth surfaces. No infectious virus could be detected from treated smooth surfaces on day 4 (glass and banknote) or day 7 (stainless steel and plastic). Strikingly, a detectable level of infectious virus could still be present on the outer layer of a surgical mask on day 7 (∼0·1% of the original inoculum). Interestingly, a biphasic decay of infectious SARS-CoV-2 could be found in samples recovered from these smooth surfaces (appendix pp 2–7). 39 representative non-infectious samples tested positive by RT-PCR 3 (data not shown), showing that non-infectious viruses could still be recovered by the eluents. We also tested the virucidal effects of disinfectants by adding 15 μL of SARS-CoV-2 culture (∼7·8 log unit of TCID50 per mL) to 135 μL of various disinfectants at working concentration (appendix p 1). With the exception of a 5-min incubation with hand soap, no infectious virus could be detected after a 5-min incubation at room temperature (22°C). Additionally, we also found that SARS-CoV-2 is extremely stable in a wide range of pH values at room temperature (pH 3–10; appendix p 1). Overall, SARS-CoV-2 can be highly stable in a favourable environment, 4 but it is also susceptible to standard disinfection methods.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                peerj
                peerj
                PeerJ
                PeerJ Inc. (San Diego, USA )
                2167-8359
                25 August 2020
                2020
                : 8
                : e9790
                Affiliations
                [-1] Infectious Disease Research Group, The Leicester School of Pharmacy, De Montfort University , Leicester, United Kingdom
                Article
                9790
                10.7717/peerj.9790
                7453921
                32904371
                a2f84dde-00cd-436b-b3e6-127a0fb5a348
                ©2020 Owen and Laird

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 18 May 2020
                : 31 July 2020
                Funding
                The authors received no funding for this work.
                Categories
                Microbiology
                Infectious Diseases
                Public Health

                textiles,linen,healthcare uniforms,fomite,laundry,laundering,decontamination,infection control

                Comments

                Comment on this article