15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Vitamin D: its role and uses in immunology.

      The FASEB Journal
      Animals, Autoimmune Diseases, pathology, prevention & control, Diabetes Mellitus, Type 1, Humans, Immune System, drug effects, immunology, Receptors, Calcitriol, physiology, Vitamin D, pharmacology, Vitamin D Deficiency, physiopathology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In recent years there has been an effort to understand possible noncalcemic roles of vitamin D, including its role in the immune system and, in particular, on T cell-medicated immunity. Vitamin D receptor is found in significant concentrations in the T lymphocyte and macrophage populations. However, its highest concentration is in the immature immune cells of the thymus and the mature CD-8 T lymphocytes. The significant role of vitamin D compounds as selective immunosuppressants is illustrated by their ability to either prevent or markedly suppress animal models of autoimmune disease. Results show that 1,25-dihydroxyvitamin D3 can either prevent or markedly suppress experimental autoimmune encephalomyelitis, rheumatoid arthritis, systemic lupus erythematosus, type I diabetes, and inflammatory bowel disease. In almost every case, the action of the vitamin D hormone requires that the animals be maintained on a normal or high calcium diet. Possible mechanisms of suppression of these autoimmune disorders by the vitamin D hormone have been presented. The vitamin D hormone stimulates transforming growth factor TGFbeta-1 and interleukin 4 (IL-4) production, which in turn may suppress inflammatory T cell activity. In support of this, the vitamin D hormone is unable to suppress a murine model of the human disease multiple sclerosis in IL-4-deficient mice. The results suggest an important role for vitamin D in autoimmune disorders and provide a fertile and interesting area of research that may yield important new therapies.

          Related collections

          Author and article information

          Comments

          Comment on this article